Uniqueness of Best Approximation of a Function and Its Derivatives

BRUCE L. CHALMERS

University of California, Riverside, California 92502 Communicated by Oved Shisha Received October 20, 1970

1. INTRODUCTION

Let C^rI denote the space of *r*-times continuously differentiable functions on the interval I = [a, b] of the real line **R**. The question of uniqueness of best approximation of functions in C^rI by functions in a finite dimensional subspace, with respect to various norms. has been investigated in several papers. Garkavi [3] examined the problem using the ordinary supremum norm

$$||f||_{\infty} = \max_{x \in I} |f(x)|.$$

In [1] we considered the norms

$$||f|| = \max[|f(c)|, |f^{(1)}(c)|, ..., |f^{(r-1)}(c)|, ||f^{(r)}||_{p}], \quad 1 \leq p \leq \infty,$$

where $\|\cdot\|_{p}$ denotes the L^{p} norm and c is a fixed point in *I*. Moursund [5] and Johnson [4] studied the norm

$$||f|| = \max[||f||_{\infty}, ||f^{(1)}||_{\infty}, ..., ||f^{(r)}||_{\infty}].$$

In this paper we shall further investigate this latter norm.

Moursund and Johnson show that if the (r + 1)st derivative of f exists everywhere on I and if p_1 and p_2 are best approximations to f in P_n , the space of polynomials of degree $\leq n$, then $p_1^{(r)} = p_2^{(r)}$, r = 0, 1, 2, In the case r = 0, Tchebycheff's classical result shows that the requirement of existence of the (r + 1)st derivative is unnecessary. In Section 2 we give an example to show that this requirement cannot be dropped if r > 0.

Garkavi showed that in order for an *n*-dimensional subspace V to be *p*-Tchebycheff (see Section 3 for definition) with respect to the usual supremum norm in C^r , $r \ge 1$, it is necessary and sufficient that any k + p

CHALMERS

linearly independent elements of V have no more than n - k - p common zeros which are also common double zeros or boundary zeros of p + 1of these elements, k = 1, 2, ..., n - p. In Section 4 we shall extend the sufficiency part of Garkavi's result to the norm

$$\|f\| = \max[\|f\|_{\infty}, \|f^{(1)}\|_{\infty}, ..., \|f^{(r)}\|_{\infty}]$$

on the space of functions having an (r + 1)st derivative everywhere on I (Theorem 3). By use of the results of Ferguson [2] we shall see that the polynomials satisfy the conditions of this extended sufficiency result, and, thus, the result of Moursund and Johnson (Theorem 5) follows as a corollary of Theorem 3.

The results mentioned above are special cases of the more general ones discussed in Section 3 where we consider the simultaneous approximation of r + 1 continuous functions f_0 , f_1 ,..., f_r by a function p in V and by its first r derivatives over r + 1 possibly different subsets of \mathbf{R} . In the situation where each of the r + 1 subsets of \mathbf{R} is the same finite union of closed intervals, we shall perform a certain imbedding and then employ the methods of Rivlin and Shapiro [6] and Garkavi [3] to obtain an extension of Garkavi's result (the condition on V will be necessary and sufficient). Finally, in Section 5 we shall obtain uniqueness results for approximation by polynomials with respect to another arrangement of the r + 1 subsets of \mathbf{R} . Here we shall use again the results of Ferguson to show how the space P_n fits into the scheme.

2. EXAMPLE OF NONUNIQUENESS OF DERIVATIVE OF BEST APPROXIMATION

DEFINITION. If V is a subspace of a normed linear space S with norm $\|\cdot\|$, we say that $g \in V$ is a best approximation of an element f of S if $\|f - g\| = \inf_{h \in V} \|f - h\|$. It is clear that the set of such best approximations is convex.

In this section we shall demonstrate a function $f \in C^1I$ such that the best approximations to f in P_2 with respect to the norm $||f|| = \max[||f||_{\infty}, ||f^{(1)}||_{\infty}]$ do not have identical derivatives.

Let I = [-4.25, 4.25]. Let $f^{(1)}(x) = |x|$ $(0 \le |x| \le 1.5)$ and $f^{(1)}(x) = 1.5$ $(1.5 \le |x| \le 4.5)$. Let f(0) = 0. Then $f(x) = (\operatorname{sgn} x) x^2/2$ for $0 \le |x| \le 1.5$ and $f(x) = (\operatorname{sgn} x)[1.5 |x| - 1.125]$ for $1.5 \le |x| \le 4.5$; see Figs. 1 and 2. Notice that $f^{(1)}(x)$ is even and f(x) is odd.

Now suppose that the derivative of a best approximation p in P_2 to f is unique. Then its graph must be horizontal. For, because of the symmetry of f and $f^{(1)}$, if $p^{(1)}(x) = ax + b$, then $p_*^{(1)}(x) = -ax + b$ is also the derivative of a best approximation in P_2 to f. We claim that p(x) = x.

FIGURE 1.

FIGURE 2.

Indeed, f(x) is an increasing function with values varying on *I* between -5.25 and 5.25. If $p^{(1)}(x) = 1$, then p(x) = x + c is an increasing function with values varying on *I* between c - 4.25 and c + 4.25. Thus, p(x) = x + c has deviation of 1 + |c| from f(x) at one of the endpoints. Let c = 0. Then it is easy to check that the maximum deviation 1 of p(x) = x from f(x) occurs only at the endpoints of *I*. Note that the maximum deviation of $p^{(1)}(x) = 1$ from $f^{(1)}(x)$ is also 1 and occurs at x = 0. Thus,

$$||f - p|| = \max[||f - p||_{\infty}, ||f^{(1)} - p^{(1)}||_{\infty}] = 1.$$

Further, if $p^{(1)}(x) = a > 1$, then $||f^{(1)} - p^{(1)}||_{\infty} = a > 1$. If $p^{(1)}(x) = a < 1$,

then p(x) has total variation 9.5*a* on *I*; hence, p(x) must deviate from f(x) by more than 1 at at least one of the endpoints 4.25 or -4.25. We conclude that if the derivative of a best approximation *p* in P_2 to *f* is unique, then *p* is unique and p(x) = x.

Now, however, consider $p_{\epsilon}(x) = (\epsilon/2) x^2 + x$, $\epsilon \ge 0$. Then $p_{\epsilon}^{(1)}(x) = \epsilon x + 1$ and it is easy to check that, for ϵ sufficiently small, $||f^{(1)} - p_{\epsilon}^{(1)}||_{\infty} = 1$ $(f^{(1)}(x) - p_{\epsilon}^{(1)}(x) = 1$, iff x = 0), and $||f - p_{\epsilon}||_{\infty} = 1$ $(f(x) - p_{\epsilon}(x) = 1$ iff $x = \pm 4.25$). Thus, p(x) = x is not a unique best approximation in P_2 to f.

Remark 1. Note that the crux of the matter in the foregoing example is that we can slightly rotate the graph of $p^{(1)}(x)$ about the point (0, 1) without increasing $||f^{(1)} - p^{(1)}||_{\infty}$. This is because the graph of $f^{(1)}$ is wedge-shaped at x = 0.

Remark 2. If the length of the interval *I* is not greater than 2, then the requirement of existence of the (r + 1)st derivative in Moursund and Johnson's result can be dropped (this follows from the mean value theorem). In fact, $p^{(r)}$ is then the best Tchebycheff approximation to $f^{(r)}$ of degree $\leq n - r$, and $||f - p|| = ||f^{(r)} - p^{(r)}||_{\infty}$.

3. SIMULTANEOUS APPROXIMATION

Let S be a subspace of $\bigotimes_{j=0}^{r} C(E_j)$, where E_j (j = 0, 1, ..., r) are compact subsets of **R**, with norm $||f|| = ||(f_0, f_1, ..., f_r)|| = \max[||f_0||_{\infty}, ||f_1||_{\infty}, ..., ||f_r||_{\infty}]$ where $||f_j||_{\infty} = \sup_{x \in E_j} |f_j(x)|$.

DEFINITION. By the dimension of a convex set P (dim P) in a finite dimensional vector space we mean the largest integer k for which there exist k + 1 elements $g_1, g_2, ..., g_{k+1}$ in P such that

$$g_1 - g_{k+1}, g_2 - g_{k+1}, ..., g_k - g_{k+1}$$

are linearly independent. (If P consists of a single point, we set dim(P) = 0; if P is empty, we set dim(P) = -1.) If W is a subspace of S, then, for each fixed q ($0 \le q \le r$), the maximum dimension of sets $P_{W}^{(q)}(f)$ of qth components of elements of best approximation in W of functions f in S is called the q-rank of W in S. (In the case r = 0 we say (following [8]) that W is s-semi-Tchebycheff or s-Tchebycheff if, for all f in S, $-1 \le \dim P_{W}^{(0)}(f) \le s$ or $0 \le P_{W}^{(0)}(f) \le s$, respectively.)

Now suppose V is an n-dimensional space of functions g defined on $E = \bigcup_{i=0}^{r} E_i$ which belong to $\bigcap_{j=0}^{r} C^j E_j$. Let $\tilde{V} = \{ \tilde{g} = (g, g^{(1)}, ..., g^{(r)});$

 $g \in V$. We wish to investigate the *r*-rank of \tilde{V} in *S* (provided, of course, \tilde{V} is a subspace of *S*). Note that $||f - \tilde{g}|| < \epsilon$ means $|f_i(x) - g^{(i)}(x)| < \epsilon$ for all x in E_i and all j = 0, 1, ..., r simultaneously.

If $f \in S$, then imbed f in C(X), where $X = \bigcup_{j=0}^{r} (E_j, j)$, by $f^*(x, j) = f_j(x)$ if $x \in E_j$, j = 0, 1, ..., r. We endow X with its natural topology. By the Hahn-Banach theorem, there exists an element L in the dual of C(X), $[C(X)]^0$, such that $L(\tilde{V}) = \{0\}$, $||L||^0 = 1$, and $L(f) = \rho = \inf_{\tilde{g} \in \tilde{V}} ||f - \tilde{g}||$. By the Riesz representation theorem, $L(h) = \int_x h d\mu$, where μ is a finite Borel measure on X. Now proceeding as in the proof of Haar's theorem (see [6]) we conclude that \tilde{g} is a best approximation in \tilde{V} to f if and only if \tilde{g}^* is a best approximation in \tilde{V}^* to f^* , and the latter implies that $f^* - \tilde{g}^* = \rho h^*$, where $|h^*| = 1$ almost everywhere with respect to μ .

Note that $\mu|_{(E_f,j)} = \mu_j$ is a finite Borel measure on $(E_j, j), j = 0, 1, ..., r$. Hence, we can write $\mu = \mu_0 + \mu_1 + \cdots + \mu_r$. We refer to an element of X as a generalized point. If $g \in V$, we call any zero of \tilde{g}^* in X a generalized zero of g.

The proof of the following two theorems were obtained by combining the methods of Garkavi [3] and Rivlin and Shapiro [6] after performing the imbedding described previously.

Theorem 1 reduces to a slight generalization of Garkavi's theorem [3, p. 97], if we set r = 0.

THEOREM 1. Let $S = \bigotimes_{j=0}^{r} \{f_j; f_j \text{ is differentiable on } E\}$ where E is a finite union of disjoint closed intervals $\{I_{\alpha}\}_{\alpha=1}^{m}$. Then for \tilde{V} to have r-rank s in S, it is necessary and sufficient that among the common generalized zeros of k (k = s + 1, s + 2,..., n) linearly independent elements of V there are no more than n - k generalized points which are generalized double or boundary zeros of s + 1 of these elements whose rth derivatives are linearly independent. $((x, j) \text{ is a generalized double zero of } p \text{ if } p^{(j)}(x) = p^{(j+1)}(x) = 0; (x, j) \text{ is a generalized boundary zero of } p \text{ if } p^{(j)}(x) = 0,$ where x is a boundary point of some I_{α} .

Proof. Sufficiency. Suppose $g_{s+2}^{(r)} - g_1^{(r)}, g_{s+1}^{(r)} - g_1^{(r)}, \dots, g_2^{(r)} - g_1^{(r)}$ are linearly independent where $\tilde{g}_1, \tilde{g}_2, \dots, \tilde{g}_{s+2}$ are best approximations in \tilde{V} to f. Hence, among the common generalized zeros of the elements $g_{s+2} - g_1$, $g_{s+1} - g_1, \dots, g_2 - g_1$, there are at most n - s - 1 common generalized double or boundary zeros in X. But each interior generalized zero of $g_i - g_1$ in the support of μ is a generalized double zero, $i = 2, 3, \dots, s + 2$. This follows since, if (x, j) is interior to (E, j) and is in the support of μ , then

$$|f_j(x) - g_i^{(j)}(x)| = \rho = \max_{y \in E} |f_j(y) - g_i^{(j)}(y)|,$$

which implies

$$f_{j}^{(1)}(x) - g_{i}^{(j+1)}(x) = 0, \quad i = 1, 2, 3, ..., s + 2;$$

hence,

$$g_i^{(i+1)}(x) - g_1^{(i+1)}(x) = 0, \quad i = 2, 3, ..., s + 2.$$

Hence, μ has a support of n - k + 1 $(k \ge s + 2)$ generalized points, say $(x_1, i_1), (x_2, i_2), \dots, (x_{n-k+1}, i_{n-k+1})$. Thus, $L = \sum_{j=1}^{n-k+1} c_j \mathscr{L}_{(x_j,i_j)}$, where $\mathscr{L}_{(x_j,i_j)}h = h_{i_j(x_j)}$. Now $L(\hat{V}) = \{0\}$ implies that $\sum_{j=1}^{n-k+1} c_j \mathscr{L}_{(x_j,i_j)} = 0$ on V, where $e_{(x_j,i_j)}g = g^{(i_j)}(x_j)$ $(1 \le j \le n-k+1)$, and, thus, $\{e_{(x_j,i_j)}\}_{j=1}^{n-k+1}$ has rank $\le n-k$ on V (i.e., $\{e_{(x_j,i_j)}\}_{j=1}^{n-k+1}$ spans a space of dimension at most n-k in V^0 .) Hence, there are, in V, k linearly independent elements $h_1 = g_{s+2} - g_1$, $h_2 = g_{s+1} - g_1, \dots, h_{s+1} = g_2 - g_1$, h_{s+2}, \dots, h_k such that $h_i^{i_j}(x_j) = 0$ $(j = 1, 2, \dots, n-k+1)$, $t = 1, 2, \dots, k$. But each (x_j, i_j) , $j = 1, 2, \dots, n-k+1$, is a common generalized double or boundary zero of h_1, h_2, \dots, h_{s+1} . Hence, among the common generalized zeros of the k $(\le s+2)$ linearly independent elements h_1, h_2, \dots, h_k of V there are n-k+1 generalized double or boundary zeros of h_1, h_2, \dots, h_{s+1} , and $h_1^{(r)}, h_2^{(r)}, \dots, h_{s+1}^{(r)}$ are linearly independent—a contradiction.

Necessity. Suppose there exist linearly independent elements g_1 , g_2 ,..., g_k $(k \ge s+1)$ in V whose common generalized zeros include as a subset $T = \{(x_1, i_1), (x_2, i_2), \dots, (x_{n-k+1}, i_{n-k+1})\}, \text{ each element of which is a }$ generalized double or boundary zero of $g_1, g_2, ..., g_{s+1}$, and $g_1^{(r)}, g_2^{(r)}, ..., g_{s+1}^{(r)}$ are linearly independent. Then $\{e_{(x_j, i_j)}\}_{j=1}^{n-k+1}$ is a linearly dependent system in V⁰, for its rank does not exceed n - k, since $e_{(x_i, i_j)}(g_i) = 0$ for t = 1, 2, ..., k, j = 1, 2, ..., n - k + 1. Hence, there exist scalars c_j $(1 \le j \le n - k + 1)$ not all zero, such that $L = \sum_{j=1}^{n-k+1} c_j \mathscr{L}_{(x_j,i_j)} = 0$ on $\tilde{\mathcal{V}}$. Assume, without loss of generality, that $\sum_{j=1}^{n-k+1} |c_j| = 1$. Clearly $||L||^0 \le 1$. Now choose h_s in $C^{2}(E)$ such that $||h_{s}||_{\infty} = 1$, $h_{s}(x_{j}) = \operatorname{sgn} c_{j}$ for all $(x_{j}, s) \in T$, and $|h_s(x)| < 1$ if $(x, s) \notin T$, s = 0, 1, ..., r. Let $h = (h_0, h_1, ..., h_s) \in S$. Then clearly $|Lh| = \sum_{j=1}^{n-k+1} |c_j| = 1$, while ||h|| = 1. Hence, $||L||^0 = 1$. We may assume that $\|\tilde{g}_m\| < 1/k$, m = 1, 2, ..., k. For s = 0, 1, ..., r, form $f_s(x) = h_s(x)[1 - \sum_{m=1}^k |g_m^{(s)}(x)|]$ on $F = \bigcup_{j=1}^{n-k+1} ([\alpha_j, \beta_j], i_j)$, where $([\alpha_i, \beta_i], i_i)$ is a neighborhood of (x_i, i_i) containing no simple zeros of $g_1^{(i_j)}, g_2^{(i_j)}, \dots, g_k^{(i_j)}$ except, possibly, boundary zeros. This is possible since either all $g_m^{(i_j)}$ $(1 \le m \le k)$ have a double zero at x_j , or x_j is a boundary point of E. Since $g_m^{(s)}$ has, in F, only zeros of order greater than one, except possibly at the boundary of F, $|g_m^{(s)}|$ is also differentiable in $F(1 \le m \le k)$. Hence, f_s is differentiable in F. Further $|f_s(x)| < 1$ if (x, s) is an (α_j, i_j) or (β_i, i_j) in the interior of (E, s). Thus, we can extend $f_s(x)$ to a function having a derivative in all of E and of absolute value $< 1 - \delta$ in $E \sim F$, $\delta > 0$ (s = 0, 1, ..., r). Let $f = (f_0, f_1, ..., f_r) \in S$. Then for all \hat{h} in \tilde{V} ,

$$\|f - \tilde{h}\| \ge |L(f - \tilde{h})| = |Lf| = \sum_{j=1}^{n-k+1} c_j f_{i_j}(x_j)$$
$$= \sum_{j=1}^{n-k+1} c_j h_{i_j}(x_j) \left[1 - \sum_{m=1}^k |g_m^{(i_j)}(x_j)|\right] = \sum_{j=1}^{n-k+1} c_j h_{i_j}(x_j)$$
$$= \sum_{j=1}^{n-k+1} c_j \operatorname{sgn} c_j = 1.$$

On the other hand,

$$\begin{split} \left| f_s(x) - \sum_{m=1}^k \epsilon_m g_m^{(s)}(x) \right| &\leq |f_s(x)| + \sum_{m=1}^k \epsilon_m |g_m^{(s)}(x)| \\ &\leq |h_s(x)| \left[1 - \sum_{m=1}^k |g_m^{(s)}(x)| \right] + \sum_{m=1}^k \epsilon_m |g_m^{(s)}(x)| \\ &\leq 1 \quad \text{if} \quad 0 \leq \epsilon_m \leq 1 \quad (1 \leq m \leq k). \end{split}$$

Thus,

$$\left\{\sum_{m=1}^{k} \epsilon_{m} g_{m} ; 0 \leqslant \epsilon_{m} \leqslant 1 \ (1 \leqslant m \leqslant k)\right\}$$

is a set of best approximations to f. But since $\{g_m^{(r)}\}_{m=1}^{s+1}$ is linearly independent we see that V has r-rank $\ge s+1$ in S.

THEOREM 2. Theorem 1 remains true if

$$S = \bigotimes_{j=0}^{r} C^{q} E,$$

where $q \ge 1$.

Proof. The condition on V is, of course, still sufficient. For the necessity, observe, first, that in the case q = 1, the functions $f_s(x)$ in Theorem 1 are in C^1F and can, thus, be extended to be in C^1E . If $q \ge 2$, however, $|g_m^{(s)}(x)|$ is no longer necessarily in C^qE , m = 1, 2, ..., k. Thus, following Garkavi, we construct functions f_s ($0 \le s \le r$) as follows. If T is as in Theorem 1, let $T_1 = \{(x, s) \in T; x \in \text{boundary of } E\}$ and $T_2 = \{(x, s) \in T; x \in \text{interior of } E\}$. For each s ($0 \le s \le r$) choose an $f_s(x)$ in C^qE such that

- (i) $f_s(x_j) = \operatorname{sgn} c_j \text{ if } (x_j, s) \in T;$
- (ii) $|f_s(x)| < 1$ if $(x, s) \notin T$;
- (iii) $f_s^{(1)}(x_j) \neq 0$ if $(x_j, s) \in T_1$;
- (iv) $f_s^{(2)}(x_j) \neq 0$ if $(x_j, s) \in T_2$.

As before, $||f - \tilde{g}|| \ge 1$ for all \tilde{g} in V. For each (x_j, s) in T, let $w_j = ([\alpha_j, \beta_j], s)$ be a neighborhood of (x_j, s) such that

- (i) $f_s^{(1)}(x) \neq 0$ if $(x, s) \in w_j$ and $(x_j, s) \in T_1$;
- (ii) $f_s^{(2)}(x) \neq 0$ if $(x, s) \in w_j$ and $(x_j, s) \in T_2$.

Let

$$E_1^s = \bigcup_{(x_j,s)\in T_1} w_j$$
 and $E_2^s = \bigcup_{(x_j,s)\in T_2} w_j$.

Assume, without loss of generality, that

$$\sup_{(x,s)\in E_1^s} k |g_m^{(s+1)}(x)| < \inf_{(x,s)\in E_1^s} |f_s^{(1)}(x)|$$

and that

$$\sup_{(x,s)\in E_2^s} k \mid g_m^{(s+2)}(x) \mid < \inf_{(x,s)\in E_2^s} \mid f_s^{(2)}(x) \mid, \qquad m = 1, 2, ..., k.$$

By Taylor's formula we have, if $0 \leq |\epsilon_m| \leq 1$,

$$f_s(x) - \sum_{m=1}^k \epsilon_m g_m^{(s)}(x) = f_s(x_j) + \left[f_s^{(1)}(\tilde{x}) - \sum_{m=1}^k \epsilon_m g_m^{(s+1)}(\tilde{x}) \right] (x - x_j),$$

where (x, s) and (\tilde{x}, s) belong to w_j , if $(x_j, s) \in T_1$, and

$$f_s(x) - \sum_{m=1}^k \epsilon_m g_m^{(s)}(x) = f_s(x_j) + \frac{1}{2} \left[f_s^{(2)}(\tilde{x}) - \sum_{m=1}^k \epsilon_m g_m^{(s+2)}(\tilde{x}) \right] (x - x_j)^2,$$

where (x, s) and (\tilde{x}, s) belong to w_j , if $(x_j, s) \in T_2$. Since $|f_s(x_j)| = 1$, we have that $f_s^{(1)}(x_j) f_s(x_j)(x - x_j) < 0$ if $(x_j, s) \in T_1$ and $f_s^{(2)}(x_j) f_s(x_j) < 0$ if $(x_j, s) \in T_2$. Combining these facts with Taylor's formula and the fact that the first and second derivatives of f_s strongly dominate the first and second derivatives of $\sum_{m=1}^k \epsilon_m g_m^{(s)}$ in $E_1^s \cup E_2^s$, we obtain that

$$\left|f_s(x) - \sum_{m=1}^k \epsilon_m g_m^{(s)}(x)\right| \leqslant 1 \quad \text{for all} \quad (x, s) \in E_1^s \cup E_2^s.$$

220

Further, in $X \sim [E_1^s \cup E_2^s]$, $|f_s(x)| \leq \Theta < 1$. Hence, if $||g_m^{(s)}||_{\infty} < (1 - \Theta)/k$, $1 \leq m \leq k$, we have

$$\left\|f_s-\sum_{m=1}^k\epsilon_mg_m^{(s)}\right\|_{\infty}\leqslant 1,\qquad m=1,\,2,...,k.$$

Hence

$$\left\|f-\sum_{m=1}^{k}\epsilon_{m}\tilde{g}_{m}\right\|\leqslant 1,$$

and the conclusion follows as in Theorem 1.

4. Approximation in $C^{r}E$

If r > 0, the subspace $V = P_{n-1}$ does not satisfy the condition in Theorem 1. In this section we examine the situation in which $f = (f_0, f_1, ..., f_r)$, $f_i = f_0^{(i)}$, $0 \le i \le r$. In this case the sufficient condition of Theorem 1 can be strengthened to include P_{n-1} .

DEFINITION. If $g \in C^r E$ and $0 \le i \le r$, we call a generalized point (x, i), such that $g^{(i)}(x) = 0$, an *r*-generalized zero of *g*. Let $g^{(-1)} \equiv 1$. If $g^{(i)}(x) = g^{(i+1)}(x) = 0$, we may call (x, i) an *r*-generalized new double zero provided we agree that neither (x, i - 1) nor (x, i + 1) may be so labeled. If $g^{(i)}(x) = 0$ and *x* is a boundary point of *E*, then (x, i) is called an *r*-generalized boundary zero of *g*.

THEOREM 3. Let $C_{r+1}E$ denote the space of functions having an (r + 1)st derivative everywhere on E, a finite union of disjoint closed intervals. Suppose that the n-dimensional subspace V satisfies the condition that among the common r-generalized zeros of k (k = s + 1, s + 2,..., n) linearly independent elements of V, there are no more that n - k generalized points which are r-generalized new double or boundary zeros of s + 1 of these elements whose rth derivatives are linearly independent. Then, with respect to the norm $||f|| = \max[||f||_{\infty}, ||f^{(1)}||_{\infty},..., ||f^{(r)}||_{\infty}]$, the dimension of the set of rth derivatives of the best approximations in V to any f in $C_{r+1}E$ does not exceed s.

Proof. We identify $C_{r+1}E$ with a subspace S_* of S of Theorem 2 by letting $f_* = (f, f^{(1)}, ..., f^{(r)})$. We follow a reasoning analogous to that in the sufficiency proof of Theorem 1 after we observe that if $|f^{(j)}(x) - g_i^{(j)}(x)| = \rho$ for x interior to E, then $f^{(j+1)}(x) - g_i^{(j+1)}(x) = 0 \neq \rho$, i = 1, 2, ..., s + 2. (In the proof of Theorem 1 it is possible that $|f_j(x) - g_i^{(j)}(x)| = \rho$ and

 $|f_{i+1}(x) - g_i^{(i+1)}(x)| = \rho$.) Thus, each interior *r*-generalized zero of $g_i - g_1$ in the support of μ is an *r*-generalized new double zero, i = 2, 3, ..., s + 2, according to the foregoing definition of an *r*-generalized new double zero. Hence, μ has a support of n - k + 1 ($k \ge s + 2$) generalized points, etc. \Box

Let $P_{n-1}I$ be the space of real polynomials of degree less than or equal to n-1 on the interval I = [a, b] and let $\{x_1, x_2, ..., x_k\} \subset I$. Let \mathscr{L}_i^j denote the linear functional on $P_{n-1}I$ defined by $\mathscr{L}_i^{j}(p) = p^{(j)}(x_i)$. Following Schoenberg [7], let $E = (e_{ij})_{i=1,2,...,k}^{j=0,1,...,n-1}$ be an *n*-incidence matrix, i.e., each e_{ij} is 0 or 1 and

$$\sum_{i,j} e_{ij} = n$$

We say that E is poised if the set of n linear functionals $\{\mathscr{L}_i^j; e_{ij} = 1\}$ is linearly independent on $P_{n-1}I$. If E is an n-incidence matrix, let

$$m_j = \sum_{i=1}^k e_{ij}, \qquad j = 0, 1, ..., n-1,$$

and

$$M_j = \sum_{p=0}^j m_p, \quad j = 0, 1, ..., n-1.$$

Then E is said to satisfy the Pólya conditions if

 $M_j \ge j+1$ for j = 0, 1, ..., n-1.

In the following four theorems we assume that the *n*-incidence matrix E satisfies the Pólya conditions.

THEOREM A. (Pólya and Whittaker, see [2].) If k = 2, then E is poised.

THEOREM B. (Ferguson [2, p. 24].) If k > 2, and if $e_{i,j-1} = e_{i,j+p} = 0$, $e_{ij} = \cdots = e_{i,j+p-1} = 1$ implies p is even, then E is poised.

THEOREM C. (Schoenberg, see [2, p. 25].) If $x_1 = a$ and $x_k = b$, and if $2 \leq i \leq k-1$ and $e_{ij} = 1$ imply $e_{ij'} = 1$ for each $j' \leq j$, then E is poised.

By combining Ferguson's proofs of Theorems B and C we can get the following result.

THEOREM 4. If $x_1 = a$ and $x_k = b$, and if $2 \le i \le k - 1$ and $e_{i,j-1} = e_{i,j+p} = 0$, $e_{ij} = \cdots = e_{i,j+p-1} = 1$ imply p is even, then E is poised.

THEOREM 5 (Moursund [5] and Johnson [4].) Consider $C_{r+1}I$ with the norm $||f|| = \max[||f||_{\infty}, ||f^{(1)}||_{\infty}, ||f^{(2)}||_{\infty}, ..., ||f^{(r)}||_{\infty}]$, where I = [a, b]. If p_1 and p_2 are best approximations in $P_{n-1}I$ to f belonging to $C_{r+1}I$, then $p_1^{(r)} = p_2^{(r)}$.

Proof. We show that $P_{n-1}I$ satisfies the condition of Theorem 3, where E = I and s = 0. The condition in this case can be reworded as follows. If

$$p_1\,,\,p_2\,,...,\,p_k\in Q_1^{\perp}=\{\mathscr{L}_{j_1}^{i_1},\,\mathscr{L}_{j_2}^{i_2},...,\,\mathscr{L}_{j_{n-k+1}}^{i_{n-k+1}}\}^{\perp}$$

and

$$p_1 \in Q_2^{\perp} = \{ \mathcal{L}_{j_1}^{i_1+1}, \, \mathcal{L}_{j_2}^{i_2+1}, ..., \, \mathcal{L}_{j_{n-k+1}}^{i_{n-k+1}+1} \}'^{\perp},$$

where $Q_1 \cap Q_2$ is empty and all $i_m \leq r$ (here ' indicates that $\mathscr{L}_{j_m}^{i_m+1}$ is omitted if $x_{i_m} = a$ or $x_{i_m} = b$, and $p \in Q^{\perp}$ means p is in the nullspace of each of the elements of Q), then either $p_1, p_2, ..., p_k$ are linearly dependent or $p_1^{(r)} = 0$, k = 1, 2, ..., n. Let v be the number of elements in Q_2 .

Now fix k. For $0 \leq q \leq n-1$, let $E^q = (e_{ij})_{i=1,2,\dots,n-k+1}^{j=q,q+1,\dots,n-1}$, where $e_{ij} = 1$ if $\mathcal{L}_j^i \in S_q \subset Q_1 \cap Q_2$, and $e_{ij} = 0$ if $\mathcal{L}_j^i \notin S_q$, where S_q will be determined. (Note: $e_{ij} = 0$ if j > r.) Let

$$m_j = \sum_{i=1}^{n-k+1} e_{ij}, \qquad j = 0, 1, ..., n-1,$$

and

$$N_p = \sum_{j=p}^r m_j$$
, $p = 0, 1, 2, ..., r$.

Now, if for some $u \in \{0, 1, 2, ..., r\}$, $N_{r-t} < n - (r-t)$ for all t = 0, 1, ..., u - 1, and $N_{r-u} \ge n - (r-u)$, then clearly $Q_1 \cup Q_2$ includes a subset S_{r-u} containing n - (r-u) linear functionals such that E^{r-u} satisfies the Pólya conditions on $P_{n-(r-u)-1}$, and, hence, $p_1 \in [Q_1 \cup Q_2]^{\perp}$ implies $p_1^{(r-u)} = 0$, by Theorem 4.

On the other hand, if $N_{r-t} < n - (r-t)$ for all t = 0, 1, ..., r, then we can augment the set $Q_1 \cup Q_2$ by adding in k - v - 1 linear functionals, for example, $\mathscr{L}_{j_{n-k+2}}^0$, $\mathscr{L}_{j_{n-k+3}}^0$, ..., $\mathscr{L}_{j_{n-v}}^0$, so that the corresponding *n*-incidence matrix satisfies the Pólya conditions and the conditions of Theorem 4. Thus, Q_1 is linearly independent, and, hence, $p_1, p_2, ..., p_k$ are linearly dependent since k + (n - k + 1) = n + 1 > n.

CHALMERS

5. OTHER RESULTS

We return now to the general situation of Section 3 described prior to Theorem 1.

The following two theorems reduce to Rubenstein's generalization of Haar's theorem on **R** in case r = 0 [3, p. 94].

THEOREM 6. Let $S = \bigotimes_{i=0}^{r} C(E_i)$. Then for \tilde{V} to be s-Tchebycheff in S it is necessary and sufficient that each s + 1 linearly independent elements of V have fewer than n - s generalized zeros in common.

Proof. This follows by applying Rubenstein's generalization of Haar's theorem [3, p. 94] to the space CX of the previous discussion.

THEOREM 7. Let $S = \bigotimes_{j=0}^{r} C(E_j)$. Then for \tilde{V} to have r-rank s in S, it is necessary and sufficient that each s + 1 elements of V whose rth derivatives are linearly independent have fewer than n - s generalized zeros in common.

Proof. Sufficiency (Sketch). Suppose $g_{s+2}^{(r)} - g_1^{(r)}, g_{s+1}^{(r)} - g_1^{(r)}, ..., g_2^{(r)} - g_1^{(r)}$ are linearly independent, where $\tilde{g}_1, \tilde{g}_2, ..., \tilde{g}_{s+2}$ are best approximations in \tilde{V} to f. Hence, there are at most n - s - 1 common generalized zeros of $g_{s+2} - g_1, ..., g_2 - g_1$, and the proof proceeds analogously to that of Rubenstein's generalization of Haar's theorem on **R**.

Necessity (Sketch). Suppose there exist elements $g_1, g_2, ..., g_{s+1}$ in V whose *r*th derivatives are linearly independent and which have n - s common generalized zeros forming a set $T = \{(x_1, i_1), (x_2, i_2), ..., (x_{n-s}, i_{n-s})\}$. Then $\{e_{(x_i,i_j)}\}_{j=1}^{n-s}$ is a linearly dependent system in V^0 , and there exist scalars c_j $(1 \le j \le n-s)$ not all zero, such that

$$L=\sum_{j=1}^{n-s}c_j\mathscr{L}_{(x_j,i_j)}=0,$$

on \tilde{V} . Assuming

$$\sum_{j=1}^{n-s} \mid c_j \mid = 1,$$

we see that $||L||^0 = 1$ by choosing $h \in \bigotimes_{j=0}^r C(E_j)$ such that ||h|| = 1 and $h_s(x_j) = \operatorname{sgn} c_j$ for all $(x_j, s) \in T$, s = 0, 1, ..., r. The proof proceeds analogously to that of Rubenstein's theorem.

DEFINITION. $E_i \leq E_j$ means that $x \leq y$ for every x in E_i and every y in E_j .

THEOREM D (Ferguson [2, p. 27].) Let $E_1 < E_2 < \cdots < E_r$, and assume that $E_i \cap E_{i+1}$ consists of at most one point, $i = 1, 2, \dots, r-1$. Consider an n-incidence matrix $E = (e_{ij})_{i=1,2,\dots,k}^{i=0,1,\dots,n-1}$, where $e_{ij} = 1$ implies that $x_i \in E_j$. Then, if E satisfies the Pólya conditions, E is poised.

THEOREM 8. Let $E_1, ..., E_r$ be as in the first sentence of Theorem D, and let $S = \bigotimes_{j=0}^{r} C(E_j)$. If p_1 and p_2 are in P_{n-1} and \tilde{p}_1 and \tilde{p}_2 are best approximations to f in S, then $p_1^{(r)} = p_2^{(r)}$.

Proof. From Theorem D and an argument analogous to that used in the proof of Theorem 5, it follows immediately that P_{n-1} satisfies the condition of Theorem 7 with s = 0.

References

- B. L. CHALMERS AND L. O. FERGUSON, Sets of best approximation in certain classes of normed spaces, J. Approximation Theory 4 (1971), 194–203.
- D. FERGUSON, The question of uniqueness for G. D. Birkhoff interpolation problems, J. Approximation Theory 2 (1969), 1-28.
- 3. A. L. GARKAVI, On dimensionality of polytopes of best approximation for differentiable functions, 23 (1959), 93–114.
- L. JOHNSON, Unicity in approximation of a function and its derivatives, Math. Comp. 22 (1968), 873-875.
- D. G. MOURSUND, Chebyshev approximation of a function and its derivatives, Math. Comp. 18 (1964), 382-389.
- T. J. RIVLIN AND H. S. SHAPIRO, Some uniqueness problems in approximation theory, Comm. Pure Appl. Math. 13 (1960), 35-47.
- I. J. SCHOENBERG, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543.
- I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York, 1970.