Uniqueness of Best Approximation of a Function and Its Derivatives

Bruce L. Chalmers
University of California, Riverside, California 92502
Communicated by Oved Shisha

Received October 20, 1970

1. Introduction

Let $C^{r} I$ denote the space of r-times continuously differentiable functions on the interval $I=[a, b]$ of the real line \mathbf{R}. The question of uniqueness of best approximation of functions in $C^{r} I$ by functions in a finite dimensional subspace, with respect to various norms. has been investigated in several papers. Garkavi [3] examined the problem using the ordinary supremum norm

$$
\|f\|_{\infty}=\max _{x \in I}|f(x)| .
$$

In [1] we considered the norms

$$
\|f\|=\max \left[|f(c)|,\left|f^{(1)}(c)\right|, \ldots,\left|f^{(r-1)}(c)\right|,\left\|f^{(r)}\right\|_{p}\right], \quad 1 \leqslant p \leqslant \infty,
$$

where $\|\cdot\|_{v}$ denotes the L^{p} norm and c is a fixed point in I. Moursund [5] and Johnson [4] studied the norm

$$
\|f\|=\max \left[\|f\|_{\infty},\left\|f^{(1)}\right\|_{\infty}, \ldots,\left\|f^{(r)}\right\|_{\infty}\right] .
$$

In this paper we shall further investigate this latter norm.
Moursund and Johnson show that if the $(r+1)$ st derivative of f exists everywhere on I and if p_{1} and p_{2} are best approximations to f in P_{n}, the space of polynomials of degree $\leqslant n$, then $p_{1}^{(r)}=p_{2}^{(r)}, r=0,1,2, \ldots$. In the case $r=0$, Tchebycheff's classical result shows that the requirement of existence of the $(r+1)$ st derivative is unnecessary. In Section 2 we give an example to show that this requirement cannot be dropped if $r>0$.
Garkavi showed that in order for an n-dimensional subspace V to be p-Tchebycheff (see Section 3 for definition) with respect to the usual supremum norm in $C^{r}, r \geqslant 1$, it is necessary and sufficient that any $k+p$
linearly independent elements of V have no more than $n-k-p$ common zeros which are also common double zeros or boundary zeros of $p+1$ of these elements, $k=1,2, \ldots, n-p$. In Section 4 we shall extend the sufficiency part of Garkavi's result to the norm

$$
\|f\|=\max \left[\|f\|_{\infty},\left\|f^{(1)}\right\|_{\infty}, \ldots,\left\|f^{(r)}\right\|_{\infty}\right]
$$

on the space of functions having an $(r+1)$ st derivative everywhere on I (Theorem 3). By use of the results of Ferguson [2] we shall see that the polynomials satisfy the conditions of this extended sufficiency result, and, thus, the result of Moursund and Johnson (Theorem 5) follows as a corollary of Theorem 3.

The results mentioned above are special cases of the more general ones discussed in Section 3 where we consider the simultaneous approximation of $r+1$ continuous functions $f_{0}, f_{1}, \ldots, f_{r}$ by a function p in V and by its first r derivatives over $r+1$ possibly different subsets of \mathbf{R}. In the situation where each of the $r+1$ subsets of \mathbf{R} is the same finite union of closed intervals, we shall perform a certain imbedding and then employ the methods of Rivlin and Shapiro [6] and Garkavi [3] to obtain an extension of Garkavi's result (the condition on V will be necessary and sufficient). Finally, in Section 5 we shall obtain uniqueness results for approximation by polynomials with respect to another arrangement of the $r+1$ subsets of \mathbf{R}. Here we shall use again the results of Ferguson to show how the space P_{n} fits into the scheme.

2. Example of Nonuniqueness of Derivative of Best Approximation

Definition. If V is a subspace of a normed linear space S with norm $\|\cdot\|$, we say that $g \in V$ is a best approximation of an element f of S if $\|f-g\|=$ $\inf _{h \in V}\|f-h\|$. It is clear that the set of such best approximations is convex.

In this section we shall demonstrate a function $f \in C^{1} I$ such that the best approximations to f in P_{2} with respect to the norm $\|f\|=\max \left[\|f\|_{\infty},\left\|f^{(1)}\right\|_{\infty}\right]$ do not have identical derivatives.

Let $\quad I=[-4.25,4.25]$. Let $\quad f^{(1)}(x)=|x| \quad(0 \leqslant|x| \leqslant 1.5) \quad$ and $f^{(1)}(x)=1.5(1.5 \leqslant|x| \leqslant 4.5)$. Let $f(0)=0$. Then $f(x)=(\operatorname{sgn} x) x^{2} / 2$ for $0 \leqslant|x| \leqslant 1.5$ and $f(x)=(\operatorname{sgn} x)[1.5|x|-1.125]$ for $1.5 \leqslant|x| \leqslant 4.5$; see Figs. 1 and 2. Notice that $f^{(1)}(x)$ is even and $f(x)$ is odd.

Now suppose that the derivative of a best approximation p in P_{2} to f is unique. Then its graph must be horizontal. For, because of the symmetry of f and $f^{(1)}$, if $p^{(1)}(x)=a x+b$, then $p_{*}^{(1)}(x)=-a x+b$ is also the derivative of a best approximation in P_{2} to f. We claim that $p(x)=x$.

Figure 1.

Figure 2.

Indeed, $f(x)$ is an increasing function with values varying on I between -5.25 and 5.25. If $p^{(1)}(x)=1$, then $p(x)=x+c$ is an increasing function with values varying on I between $c-4.25$ and $c+4.25$. Thus, $p(x)=x+c$ has deviation of $1+|c|$ from $f(x)$ at one of the endpoints. Let $c=0$. Then it is easy to check that the maximum deviation 1 of $p(x)=x$ from $f(x)$ occurs only at the endpoints of I. Note that the maximum deviation of $p^{(1)}(x)=1$ from $f^{(1)}(x)$ is also 1 and occurs at $x=0$. Thus,

$$
\|f-p\|=\max \left[\|f-p\|_{\infty},\left\|f^{(1)}-p^{(1)}\right\|_{\infty}\right]=1
$$

Further, if $p^{(1)}(x)=a>1$, then $\left\|f^{(1)}-p^{(1)}\right\|_{\infty}=a>1$. If $p^{(1)}(x)=a<1$,
then $p(x)$ has total variation $9.5 a$ on I; hence, $p(x)$ must deviate from $f(x)$ by more than 1 at at least one of the endpoints 4.25 or -4.25 . We conclude that if the derivative of a best approximation p in P_{2} to f is unique, then p is unique and $p(x)=x$.

Now, however, consider $p_{\epsilon}(x)=(\epsilon / 2) x^{2}+x, \epsilon \geqslant 0$. Then $p_{\epsilon}^{(1)}(x)=\epsilon x+1$ and it is easy to check that, for ϵ sufficiently small, $\left\|f^{(1)}-p_{\epsilon}^{(1)}\right\|_{\infty}=1$ $\left(f^{(1)}(x)-p_{\epsilon}^{(1)}(x)=1\right.$, iff $\left.x=0\right)$, and $\left\|f-p_{\epsilon}\right\|_{\infty}=1\left(f(x)-p_{\epsilon}(x)=1\right.$ iff $x= \pm 4.25$). Thus, $p(x)=x$ is not a unique best approximation in P_{2} to f.

Remark 1. Note that the crux of the matter in the foregoing example is that we can slightly rotate the graph of $p^{(1)}(x)$ about the point $(0,1)$ without increasing $\left\|f^{(1)}-p^{(1)}\right\|_{\infty}$. This is because the graph of $f^{(1)}$ is wedge-shaped at $x=0$.

Remark 2. If the length of the interval I is not greater than 2 , then the requirement of existence of the $(r+1)$ st derivative in Moursund and Johnson's result can be dropped (this follows from the mean value theorem). In fact, $p^{(r)}$ is then the best Tchebycheff approximation to $f^{(r)}$ of degree $\leqslant n-r$, and $\|f-p\|=\left\|f^{(r)}-p^{(r)}\right\|_{\infty}$.

3. Simultaneous Approximation

Let S be a subspace of $\otimes_{j=0}^{r} C\left(E_{j}\right)$, where $E_{j}(j=0,1, \ldots, r)$ are compact subsets of \mathbf{R}, with norm $\|f\|=\left\|\left(f_{0}, f_{1}, \ldots, f_{r}\right)\right\|=\max \left[\left\|f_{0}\right\|_{\infty},\left\|f_{1}\right\|_{\infty}, \ldots,\left\|f_{r}\right\|_{\infty}\right]$ where $\left\|f_{j}\right\|_{\infty}=\sup _{x \in E_{j}}\left|f_{j}(x)\right|$.

Definition. By the dimension of a convex set $P(\operatorname{dim} P)$ in a finite dimensional vector space we mean the largest integer k for which there exist $k+1$ elements $g_{1}, g_{2}, \ldots, g_{k+1}$ in P such that

$$
g_{1}-g_{k+1}, g_{2}-g_{k+1}, \ldots, g_{k}-g_{k+1}
$$

are linearly independent. (If P consists of a single point, we set $\operatorname{dim}(P)=0$; if P is empty, we set $\operatorname{dim}(P)=-1$.) If W is a subspace of S, then, for each fixed $q(0 \leqslant q \leqslant r)$, the maximum dimension of sets $P_{W}^{(q)}(f)$ of q th components of elements of best approximation in W of functions f in S is called the q-rank of W in S. (In the case $r=0$ we say (following [8]) that W is s-semi-Tchebycheff or s-Tchebycheff if, for all f in $S,-1 \leqslant \operatorname{dim} P_{W}^{(0)}(f) \leqslant s$ or $0 \leqslant P_{W}^{(0)}(f) \leqslant s$, respectively.)

Now suppose V is an n-dimensional space of functions g defined on $E=\bigcup_{i=0}^{r} E_{j}$ which belong to $\bigcap_{j=0}^{r} C^{j} E_{j}$. Let $\tilde{V}=\left\{\tilde{g}=\left(g, g^{(1)}, \ldots, g^{(r)}\right) ;\right.$
$g \in V\}$. We wish to investigate the r-rank of \tilde{V} in S (provided, of course, \tilde{V} is a subspace of S). Note that $\|f-\tilde{g}\|<\epsilon$ means $\left|f_{j}(x)-g^{(j)}(x)\right|<\epsilon$ for all x in E_{j} and all $j=0,1, \ldots, r$ simultaneously.

If $f \in S$, then imbed f in $C(X)$, where $X=\bigcup_{j=0}^{r}\left(E_{j}, j\right)$, by $f^{*}(x, j)=f_{j}(x)$ if $x \in E_{j}, j=0,1, \ldots, r$. We endow X with its natural topology. By the Hahn-Banach theorem, there exists an element L in the dual of $C(X)$, $[C(X)]^{0}$, such that $L(\tilde{V})=\{0\},\|L\|^{0}=1$, and $L(f)=\rho=\inf _{\tilde{g} \tilde{\tilde{V}}}\|f-\tilde{g}\|$. By the Riesz representation theorem, $L(h)=\int_{x} h d \mu$, where μ is a finite Borel measure on X. Now proceeding as in the proof of Haar's theorem (see [6]) we conclude that \tilde{g} is a best approximation in \tilde{V} to f if and only if \tilde{g}^{*} is a best approximation in \tilde{V}^{*} to f^{*}, and the latter implies that $f^{*}-\tilde{g}^{*}=\rho \bar{h}^{*}$, where $\left|h^{*}\right|=1$ almost everywhere with respect to μ.

Note that $\left.\mu\right|_{\left(E_{j}, j\right)}=\mu_{j}$ is a finite Borel measure on $\left(E_{j}, j\right), j=0,1, \ldots, r$. Hence, we can write $\mu=\mu_{0}+\mu_{1}+\cdots+\mu_{r}$. We refer to an element of X as a generalized point. If $g \in V$, we call any zero of \tilde{g}^{*} in X a generalized zero of g.
The proof of the following two theorems were obtained by combining the methods of Garkavi [3] and Rivlin and Shapiro [6] after performing the imbedding described previously.

Theorem 1 reduces to a slight generalization of Garkavi's theorem [3, p. 97], if we set $r=0$.

Theorem 1. Let $S=\bigotimes_{j=0}^{r}\left\{f_{j} ; f_{j}\right.$ is differentiable on $\left.E\right\}$ where E is a finite union of disjoint closed intervals $\left\{I_{\alpha}\right\}_{\alpha=1}^{m}$. Then for \tilde{V} to have r-rank s in S, it is necessary and sufficient that among the common generalized zeros of k ($k=s+1, s+2, \ldots, n$) linearly independent elements of V there are no more than $n-k$ generalized points which are generalized double or boundary zeros of $s+1$ of these elements whose r th derivatives are linearly independent. $\left((x, j)\right.$ is a generalized double zero of p if $p^{(i)}(x)=p^{(j+1)}(x)=0 ;(x, j)$ is a generalized boundary zero of p if $p^{(i)}(x)=0$, where x is a boundary point of some I_{α}.

Proof. Sufficiency. Suppose $g_{s+2}^{(r)}-g_{1}^{(r)}, g_{s+1}^{(r)}-g_{1}^{(r)}, \ldots, g_{2}^{(r)}-g_{1}^{(r)}$ are linearly independent where $\tilde{g}_{1}, \tilde{g}_{2}, \ldots, \tilde{g}_{s+2}$ are best approximations in \tilde{V} to f. Hence, among the common generalized zeros of the elements $g_{s+2}-g_{1}$, $g_{s+1}-g_{1}, \ldots, g_{2}-g_{1}$, there are at most $n-s-1$ common generalized double or boundary zeros in X. But each interior generalized zero of $g_{i}-g_{1}$ in the support of μ is a generalized double zero, $i=2,3, \ldots, s+2$. This follows since, if (x, j) is interior to (E, j) and is in the support of μ, then

$$
\left|f_{j}(x)-g_{i}^{(j)}(x)\right|=\rho=\max _{y \in E}\left|f_{j}(y)-g_{i}^{(j)}(y)\right|,
$$

which implies

$$
f_{j}^{(1)}(x)-g_{i}^{(j+1)}(x)=0, \quad i=1,2,3, \ldots, s+2
$$

hence,

$$
g_{i}^{(j+1)}(x)-g_{1}^{(j+1)}(x)=0, \quad i=2,3, \ldots, s+2
$$

Hence, μ has a support of $n-k+1(k \geqslant s+2)$ generalized points, say $\left(x_{1}, i_{1}\right),\left(x_{2}, i_{2}\right), \ldots,\left(x_{n-k+1}, i_{n-k+1}\right)$. Thus, $L=\sum_{j=1}^{n-k+1} c_{j} \mathscr{L}_{\left(x_{j}, i_{j}\right)}$, where $\mathscr{L}_{\left(x_{j}, i_{j}\right)} h=h_{i_{j}\left(x_{j}\right)}$. Now $L(\tilde{V})=\{0\}$ implies that $\sum_{j=1}^{n-k+1} c_{j} e_{\left(x_{j}, i_{j}\right)}=0$ on V, where $e_{\left(x_{j}, i_{j}\right)} g=g^{\left.(i)_{j}\right)}\left(x_{j}\right) \quad(1 \leqslant j \leqslant n-k+1)$, and, thus, $\left\{e_{\left(x_{j}, i_{j}\right)}\right\}_{j=1}^{n-k+1}$ has rank $\leqslant n-k$ on V (i.e., $\left\{e_{\left(x_{j}, i_{j}\right)}\right\}_{j=1}^{n-k+1}$ spans a space of dimension at most $n-k$ in V^{0}.) Hence, there are, in V, k linearly independent elements $h_{1}=g_{s+2}-g_{1}, h_{2}=g_{s+1}-g_{1}, \ldots, h_{s+1}=g_{2}-g_{1}, h_{s+2}, \ldots, h_{k}$ such that $h_{t}^{i}\left(x_{j}\right)=0 \quad(j=1,2, \ldots, n-k+1), \quad t=1,2, \ldots, k$. But each $\left(x_{j}, i_{j}\right)$, $j=1,2, \ldots, n-k+1$, is a common generalized double or boundary zero of $h_{1}, h_{2}, \ldots, h_{s+1}$. Hence, among the common generalized zeros of the k $(\leqslant s+2)$ linearly independent elements $h_{1}, h_{2}, \ldots, h_{k}$ of V there are $n-k+1$ generalized double or boundary zeros of $h_{1}, h_{2}, \ldots, h_{s+1}$, and $h_{1}^{(r)}, h_{2}^{(r)}, \ldots, h_{s+1}^{(r)}$ are linearly independent-a contradiction.

Necessity. Suppose there exist linearly independent elements $g_{1}, g_{2}, \ldots, g_{k}$ $(k \geqslant s+1)$ in V whose common generalized zeros include as a subset $T=\left\{\left(x_{1}, i_{1}\right),\left(x_{2}, i_{2}\right), \ldots,\left(x_{n-k+1}, i_{n-k+1}\right)\right\}$, each element of which is a generalized double or boundary zero of $g_{1}, g_{2}, \ldots, g_{s+1}$, and $g_{1}^{(r)}, g_{2}^{(r)}, \ldots, g_{s+1}^{(r)}$ are linearly independent. Then $\left\{e_{\left(x_{j}, i_{j}\right.}\right\}_{j=1}^{n-k+1}$ is a linearly dependent system in V^{0}, for its rank does not exceed $n-k$, since $e_{\left(x_{j}, i_{j}\right)}\left(g_{t}\right)=0$ for $t=1,2, \ldots, k$, $j=1,2, \ldots, n-k+1$. Hence, there exist scalars $c_{j}(1 \leqslant j \leqslant n-k+1)$ not all zero, such that $L=\sum_{j=1}^{n-k+1} c_{j} \mathscr{L}_{\left(x_{j}, i_{j}\right)}=0$ on \tilde{V}. Assume, without loss of generality, that $\sum_{j=1}^{n-k+1}\left|c_{j}\right|=1$. Clearly $\|L\|^{0} \leqslant 1$. Now choose h_{s} in $C^{2}(E)$ such that $\left\|h_{s}\right\|_{\infty}=1, h_{s}\left(x_{j}\right)=\operatorname{sgn} c_{j}$ for all $\left(x_{j}, s\right) \in T$, and $\left|h_{s}(x)\right|<1$ if $(x, s) \notin T, s=0,1, \ldots, r$. Let $h=\left(h_{0}, h_{1}, \ldots, h_{s}\right) \in S$. Then clearly $|L h|=\sum_{j=1}^{n-k+1}\left|c_{j}\right|=1$, while $\|h\|=1$. Hence, $\|L\|^{0}=1$. We may assume that $\left\|\tilde{g}_{m}\right\|<1 / k, m=1,2, \ldots, k$. For $s=0,1, \ldots, r$, form $f_{s}(x)=h_{s}(x)\left[1-\sum_{m=1}^{k}\left|g_{m}^{(s)}(x)\right|\right] \quad$ on $\quad F=\bigcup_{j=1}^{n-k+1}\left(\left[\alpha_{j}, \beta_{j}\right], i_{j}\right)$, where ($\left[\alpha_{j}, \beta_{j}\right], i_{j}$) is a neighborhood of (x_{j}, i_{j}) containing no simple zeros of $g_{1}^{\left(i_{j}\right)}, g_{2}^{\left(i_{j}\right)}, \ldots, g_{k}^{\left(i_{j}\right)}$ except, possibly, boundary zeros. This is possible since either all $g_{m}^{\left(i_{j}\right)}(1 \leqslant m \leqslant k)$ have a double zero at x_{j}, or x_{j} is a boundary point of E. Since $g_{m}^{(s)}$ has, in F, only zeros of order greater than one, except possibly at the boundary of $F,\left|g_{m}^{(s)}\right|$ is also differentiable in $F(1 \leqslant m \leqslant k)$. Hence, f_{s} is differentiable in F. Further $\left|f_{s}(x)\right|<1$ if (x, s) is an $\left(\alpha_{j}, i_{j}\right)$ or $\left(\beta_{j}, i_{j}\right)$ in the interior of (E, s). Thus, we can extend $f_{s}(x)$ to a function
having a derivative in all of E and of absolute value $<1-\delta$ in $E \sim F$, $\delta>0(s=0,1, \ldots, r)$. Let $f=\left(f_{0}, f_{1}, \ldots, f_{r}\right) \in S$. Then for all \tilde{h} in \tilde{V},

$$
\begin{aligned}
\|f-\tilde{h}\| & \geqslant|L(f-\tilde{h})|=|L f|=\sum_{j=1}^{n-k+1} c_{j} f_{i_{j}}\left(x_{j}\right) \\
& =\sum_{j=1}^{n-k+1} c_{j} h_{i_{j}}\left(x_{j}\right)\left[1-\sum_{m=1}^{k}\left|g_{m}^{\left(i_{j}\right)}\left(x_{j}\right)\right|\right]=\sum_{j=1}^{n-k+1} c_{j} h_{i_{j}}\left(x_{j}\right) \\
& =\sum_{j=1}^{n-k+1} c_{j} \operatorname{sgn} c_{j}=1 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|f_{s}(x)-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s)}(x)\right| & \leqslant\left|f_{s}(x)\right|+\sum_{m=1}^{k} \epsilon_{m}\left|g_{m}^{(s)}(x)\right| \\
& \leqslant\left|h_{s}(x)\right|\left[1-\sum_{m=1}^{k}\left|g_{m}^{(s)}(x)\right|\right]+\sum_{m=1}^{k} \epsilon_{m}\left|g_{m}^{(s)}(x)\right| \\
& \leqslant 1 \quad \text { if } 0 \leqslant \epsilon_{m} \leqslant 1 \quad(1 \leqslant m \leqslant k) .
\end{aligned}
$$

Thus,

$$
\left\{\sum_{m=1}^{k} \epsilon_{m} g_{m} ; 0 \leqslant \epsilon_{m} \leqslant 1(1 \leqslant m \leqslant k)\right\}
$$

is a set of best approximations to f. But since $\left\{g_{m}^{(r)}\right\}_{m=1}^{s+1}$ is linearly independent we see that V has r-rank $\geqslant s+1$ in S.

Theorem 2. Theorem 1 remains true if

$$
S=\stackrel{r}{\otimes}{ }_{j=0}^{\otimes} C^{q} E,
$$

where $q \geqslant 1$.
Proof. The condition on V is, of course, still sufficient. For the necessity, observe, first, that in the case $q=1$, the functions $f_{s}(x)$ in Theorem 1 are in $C^{1} F$ and can, thus, be extended to be in $C^{1} E$. If $q \geqslant 2$, however, $\left|g_{m}^{(s)}(x)\right|$ is no longer necessarily in $C^{9} E, m=1,2, \ldots, k$. Thus, following Garkavi, we construct functions $f_{s}(0 \leqslant s \leqslant r)$ as follows. If T is as in Theorem 1 , let $T_{1}=\{(x, s) \in T ; x \in$ boundary of $E\}$ and $T_{2}=\{(x, s) \in T ; x \in$ interior of $E\}$. For each $s(0 \leqslant s \leqslant r)$ choose an $f_{s}(x)$ in $C^{a} E$ such that
(i) $f_{s}\left(x_{j}\right)=\operatorname{sgn} c_{j}$ if $\left(x_{j}, s\right) \in T$;
(ii) $\left|f_{s}(x)\right|<1$ if $(x, s) \notin T$;
(iii) $f_{s}^{(1)}\left(x_{j}\right) \neq 0$ if $\left(x_{j}, s\right) \in T_{1}$;
(iv) $f_{s}^{(2)}\left(x_{j}\right) \neq 0$ if $\left(x_{j}, s\right) \in T_{2}$.

As before, $\|f-\tilde{g}\| \geqslant 1$ for all \tilde{g} in V. For each (x_{j}, s) in T, let $w_{j}=\left(\left[\alpha_{j}, \beta_{j}\right], s\right)$ be a neighborhood of $\left(x_{j}, s\right)$ such that
(i) $f_{s}^{(1)}(x) \neq 0$ if $(x, s) \in w_{j}$ and $\left(x_{j}, s\right) \in T_{1}$;
(ii) $f_{s}^{(2)}(x) \neq 0$ if $(x, s) \in w_{j}$ and $\left(x_{j}, s\right) \in T_{2}$.

Let

$$
E_{1}^{s}=\bigcup_{\left(x_{j}, s\right) \in T_{1}} w_{j} \quad \text { and } \quad E_{2}^{s}=\bigcup_{\left(x_{j}, s\right) \in T_{2}} w_{j}
$$

Assume, without loss of generality, that

$$
\sup _{(x, s) \in E_{1_{1}^{3}}} k\left|g_{m}^{(s+1)}(x)\right|<\inf _{(x, s) \in E_{1}^{s}}\left|f_{s}^{(1)}(x)\right|
$$

and that

$$
\sup _{(x, s) \in E_{2}^{s}} k\left|g_{m}^{(s+2)}(x)\right|<\inf _{(x, s) \in E_{2}}\left|f_{s}^{(2)}(x)\right|, \quad m=1,2, \ldots, k
$$

By Taylor's formula we have, if $0 \leqslant\left|\epsilon_{m}\right| \leqslant 1$,

$$
f_{s}(x)-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s)}(x)=f_{s}\left(x_{j}\right)+\left[f_{s}^{(1)}(\tilde{x})-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s+1)}(\tilde{x})\right]\left(x-x_{j}\right),
$$

where (x, s) and (\tilde{x}, s) belong to w_{j}, if $\left(x_{j}, s\right) \in T_{1}$, and

$$
f_{s}(x)-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s)}(x)=f_{s}\left(x_{j}\right)+\frac{1}{2}\left[f_{s}^{(2)}(\tilde{x})-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s+2)}(\tilde{x})\right]\left(x-x_{j}\right)^{2},
$$

where (x, s) and ($\tilde{x}, s)$ belong to w_{j}, if $\left(x_{j}, s\right) \in T_{2}$. Since $\left|f_{s}\left(x_{j}\right)\right|=1$, we have that $f_{s}^{(1)}\left(x_{j}\right) f_{s}\left(x_{j}\right)\left(x-x_{j}\right)<0$ if $\left(x_{j}, s\right) \in T_{1}$ and $f_{s}^{(2)}\left(x_{j}\right) f_{s}\left(x_{j}\right)<0$ if $\left(x_{j}, s\right) \in T_{2}$. Combining these facts with Taylor's formula and the fact that the first and second derivatives of f_{s} strongly dominate the first and second derivatives of $\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s)}$ in $E_{1}{ }^{s} \cup E_{2}{ }^{s}$, we obtain that

$$
\left|f_{s}(x)-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s)}(x)\right| \leqslant 1 \quad \text { for all } \quad(x, s) \in E_{1}^{s} \cup E_{2}^{s}
$$

Further, in $X \sim\left[E_{1}^{s} \cup E_{2}{ }^{s}\right],\left|f_{s}(x)\right| \leqslant \Theta<1$. Hence, if $\left\|g_{m}^{(s)}\right\|_{\infty}<(1-\Theta) / k$, $1 \leqslant m \leqslant k$, we have

$$
\left\|f_{s}-\sum_{m=1}^{k} \epsilon_{m} g_{m}^{(s)}\right\|_{\infty} \leqslant 1, \quad m=1,2, \ldots, k
$$

Hence

$$
\left\|f-\sum_{m=1}^{k} \epsilon_{m} \tilde{g}_{m}\right\| \leqslant 1
$$

and the conclusion follows as in Theorem 1.

4. Approximation in $C^{r} E$

If $r>0$, the subspace $V=P_{n-1}$ does not satisfy the condition in Theorem 1. In this section we examine the situation in which $f=\left(f_{0}, f_{1}, \ldots, f_{r}\right)$, $f_{i}=f_{0}^{(i)}, 0 \leqslant i \leqslant r$. In this case the sufficient condition of Theorem 1 can be strengthened to include P_{n-1}.

Definition. If $g \in C^{r} E$ and $0 \leqslant i \leqslant r$, we call a generalized point (x, i), such that $g^{(i)}(x)=0$, an r-generalized zero of g. Let $g^{(-1)} \equiv 1$. If $g^{(i)}(x)=$ $g^{(i+1)}(x)=0$, we may call (x, i) an r-generalized new double zero provided we agree that neither $(x, i-1)$ nor $(x, i+1)$ may be so labeled. If $g^{(i)}(x)=0$ and x is a boundary point of E, then (x, i) is called an r-generalized boundary zero of g.

Theorem 3. Let $C_{r+1} E$ denote the space of functions having an $(r+1)$ st derivative everywhere on E, a finite union of disjoint closed intervals. Suppose that the n-dimensional subspace V satisfies the condition that among the common r-generalized zeros of $k(k=s+1, s+2, \ldots, n)$ linearly independent elements of V, there are no more that $n-k$ generalized points which are r-generalized new double or boundary zeros of $s+1$ of these elements whose r th derivatives are linearly independent. Then, with respect to the norm $\|f\|=\max \left[\|f\|_{\infty},\left\|f^{(1)}\right\|_{\infty}, \ldots,\left\|f^{(r)}\right\|_{\infty}\right]$, the dimension of the set of r th derivatives of the best approximations in to any f in $C_{r+1} E$ does not exceed s.

Proof. We identify $C_{r+1} E$ with a subspace S_{*} of S of Theorem 2 by letting $f_{*}=\left(f, f^{(1)}, \ldots, f^{(r)}\right)$. We follow a reasoning analogous to that in the sufficiency proof of Theorem 1 after we observe that if $\left|f^{(j)}(x)-g_{i}^{(j)}(x)\right|=\rho$ for x interior to E, then $f^{(j+1)}(x)-g_{i}^{(j+1)}(x)=0 \neq \rho, i=1,2, \ldots, s+2$. (In the proof of Theorem 1 it is possible that $\left|f_{j}(x)-g_{i}^{(j)}(x)\right|=\rho$ and
$\left|f_{j+1}(x)-g_{i}^{(j+1)}(x)\right|=\rho$.) Thus, each interior r-generalized zero of $g_{i}-g_{1}$ in the support of μ is an r-generalized new double zero, $i=2,3, \ldots, s+2$, according to the foregoing definition of an r-generalized new double zero. Hence, μ has a support of $n-k+1(k \geqslant s+2)$ generalized points, etc.

Let $P_{n-1} I$ be the space of real polynomials of degree less than or equal to $n-1$ on the interval $I=[a, b]$ and let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset I$. Let \mathscr{L}_{i}^{j} denote the linear functional on $P_{n-1} I$ defined by $\mathscr{L}_{i}^{j}(p)=p^{(j)}\left(x_{i}\right)$. Following Schoenberg [7], let $E=\left(e_{i j}\right)_{i=1,2, \ldots, k}^{j=0,1, \ldots, n-1}$ be an n-incidence matrix, i.e., each $e_{i j}$ is 0 or 1 and

$$
\sum_{i, j} e_{i j}=n .
$$

We say that E is poised if the set of n linear functionals $\left\{\mathscr{L}_{i}^{j} ; e_{i j}=1\right\}$ is linearly independent on $P_{n-1} I$. If E is an n-incidence matrix, let

$$
m_{j}=\sum_{i=1}^{k} e_{i j}, \quad j=0,1, \ldots, n-1
$$

and

$$
M_{j}=\sum_{p=0}^{j} m_{p}, \quad j=0,1, \ldots, n-1
$$

Then E is said to satisfy the Pólya conditions if

$$
M_{j} \geqslant j+1 \quad \text { for } \quad j=0,1, \ldots, n-1
$$

In the following four theorems we assume that the n-incidence matrix E satisfies the Polya conditions.

Theorem A. (Pólya and Whittaker, see [2].) If $k=2$, then E is poised.
Theorem B. (Ferguson [2, p. 24].) If $k>2$, and if $e_{i, j-1}=e_{i, j+p}=0$, $e_{i j}=\cdots=e_{i, j+p-1}=1$ implies p is even, then E is poised.

Theorem C. (Schoenberg, see [2, p. 25].) If $x_{1}=a$ and $x_{k}=b$, and if $2 \leqslant i \leqslant k-1$ and $e_{i j}=1$ imply $e_{i j^{\prime}}=1$ for each $j^{\prime} \leqslant j$, then E is poised.

By combining Ferguson's proofs of Theorems \mathbf{B} and C we can get the following result.

THEOREM 4. If $x_{1}=a$ and $x_{k}=b$, and if $2 \leqslant i \leqslant k-1$ and $e_{i, j-1}=$ $e_{i, j+p}=0, e_{i j}=\cdots=e_{i, j+p-1}=1$ imply p is even, then E is poised.

Theorem 5 (Moursund [5] and Johnson [4].) Consider $C_{r+1} I$ with the norm $\|f\|=\max \left[\|f\|_{\infty},\left\|f^{(1)}\right\|_{\infty},\left\|f^{(2)}\right\|_{\infty}, \ldots,\left\|f^{(r)}\right\|_{\infty}\right]$, where $I=[a, b]$. If p_{1} and p_{2} are best approximations in $P_{n-1} I$ to f belonging to $C_{r+1} I$, then $p_{1}^{(r)}=p_{2}^{(r)}$.

Proof. We show that $P_{n-1} I$ satisfies the condition of Theorem 3, where $E=I$ and $s=0$. The condition in this case can be reworded as follows. If

$$
p_{1}, p_{2}, \ldots, p_{k} \in Q_{1}^{\perp}=\left\{\mathscr{L}_{j_{1}}^{i_{1}}, \mathscr{L}_{j_{2}}^{i_{2}}, \ldots, \mathscr{L}_{j_{n-k+1}}^{i_{n-k+1}}\right\}^{\perp}
$$

and

$$
p_{1} \in Q_{2}{ }^{\perp}=\left\{\mathscr{L}_{j_{1}}^{i_{1}+1}, \mathscr{L}_{j_{2}}^{i_{2}+1}, \ldots, \mathscr{L}_{j_{n-k+1}}^{i_{n-k+1}+1}\right\}^{\prime \perp}
$$

where $Q_{1} \cap Q_{2}$ is empty and all $i_{m} \leqslant r$ (here' indicates that $\mathscr{L}_{j_{m}}^{i_{m}+1}$ is omitted if $x_{j_{m}}=a$ or $x_{j_{m}}=b$, and $p \in Q^{\perp}$ means p is in the nullspace of each of the elements of Q), then either $p_{1}, p_{2}, \ldots, p_{k}$ are linearly dependent or $p_{1}^{(r)}=0$, $k=1,2, \ldots, n$. Let v be the number of elements in Q_{2}.

Now fix k. For $0 \leqslant q \leqslant n-1$, let $E^{q}=\left(e_{i j}\right)_{i=1,2, \ldots, n-k+1}^{j=q, q+1, \ldots, n-1}$, where $e_{i j}=1$ if $\mathscr{L}_{j}{ }^{i} \in S_{q} \subset Q_{1} \cap Q_{2}$, and $e_{i j}=0$ if $\mathscr{L}_{j} \not \ddagger S_{q}$, where S_{q} will be determined. (Note: $e_{i j}=0$ if $j>r$.) Let

$$
m_{j}=\sum_{i=1}^{n-k+1} e_{i j}, \quad j=0,1, \ldots, n-1
$$

and

$$
N_{p}=\sum_{j=p}^{r} m_{j}, \quad p=0,1,2, \ldots, r
$$

Now, if for some $u \in\{0,1,2, \ldots, r\}, N_{r-t}<n-(r-t)$ for all $t=0,1, \ldots, u-1$, and $N_{r-u} \geqslant n-(r-u)$, then clearly $Q_{1} \cup Q_{2}$ includes a subset S_{r-u} containing $n-(r-u)$ linear functionals such that E^{r-u} satisfies the Pólya conditions on $P_{n-(r-u)-1}$, and, hence, $p_{1} \in\left[Q_{1} \cup Q_{2}\right]^{\perp}$ implies $p_{1}^{(r-u)}=0$, by Theorem 4.

On the other hand, if $N_{r-t}<n-(r-t)$ for all $t=0,1, \ldots, r$, then we can augment the set $Q_{1} \cup Q_{2}$ by adding in $k-v-1$ linear functionals, for example, $\mathscr{L}_{j_{n-k+2}}^{0}, \mathscr{L}_{j_{n-k+3}}^{0}, \ldots, \mathscr{L}_{j_{n-v}}^{0}$, so that the corresponding n-incidence matrix satisfies the Pólya conditions and the conditions of Theorem 4. Thus, Q_{1} is linearly independent, and, hence, $p_{1}, p_{2}, \ldots, p_{k}$ are linearly dependent since $k+(n-k+1)=n+1>n$.

5. Other Results

We return now to the general situation of Section 3 described prior to Theorem 1.

The following two theorems reduce to Rubenstein's generalization of Haar's theorem on \mathbf{R} in case $r=0[3, \mathrm{p} .94]$.

Theorem 6. Let $S=\otimes_{j=0}^{r} C\left(E_{j}\right)$. Then for \tilde{V} to be s-Tchebycheff in S it is necessary and sufficient that each $s+1$ linearly independent elements of V have fewer than $n-s$ generalized zeros in common.

Proof. This follows by applying Rubenstein's generalization of Haar's theorem [3, p. 94] to the space $C X$ of the previous discussion.

Theorem 7. Let $S=\otimes_{j=0}^{r} C\left(E_{j}\right)$. Then for \tilde{V} to have r-rank s in S, it is necessary and sufficient that each $s+1$ elements of V whose r th derivatives are linearly independent have fewer than $n-s$ generalized zeros in common.
Proof. Sufficiency (Sketch). Suppose $g_{s+2}^{(r)}-g_{1}^{(r)}, g_{s+1}^{(r)}-g_{1}^{(r)}, \ldots, g_{2}^{(r)}-g_{1}^{(r)}$ are linearly independent, where $\tilde{g}_{1}, \tilde{g}_{2}, \ldots, \tilde{g}_{3+2}$ are best approximations in \tilde{V} to f. Hence, there are at most $n-s-1$ common generalized zeros of $g_{s+2}-g_{1}, \ldots, g_{2}-g_{1}$, and the proof proceeds analogously to that of Rubenstein's generalization of Haar's theorem on \mathbf{R}.

Necessity (Sketch). Suppose there exist elements $g_{1}, g_{2}, \ldots, g_{s+1}$ in V whose r th derivatives are linearly independent and which have $n-s$ common generalized zeros forming a set $T=\left\{\left(x_{1}, i_{1}\right),\left(x_{2}, i_{2}\right), \ldots,\left(x_{n-s}, i_{n-s}\right)\right\}$. Then $\left\{e_{\left(x_{j}, i, j\right.}\right\}_{j=1}^{n-s}$ is a linearly dependent system in V^{0}, and there exist scalars c_{j} $(1 \leqslant j \leqslant n-s)$ not all zero, such that

$$
L=\sum_{j=1}^{n-s} c_{j} \mathscr{L}_{\left(x_{j}, i_{j}\right)}=0,
$$

on \tilde{V}. Assuming

$$
\sum_{j=1}^{n-s}\left|c_{j}\right|=1,
$$

we see that $\|L\|^{0}=1$ by choosing $h \in \otimes_{j=0}^{r} C\left(E_{j}\right)$ such that $\|h\|=1$ and $h_{s}\left(x_{j}\right)=\operatorname{sgn} c_{j}$ for all $\left(x_{j}, s\right) \in T, s=0,1, \ldots, r$. The proof proceeds analogously to that of Rubenstein's theorem.

Defintion. $E_{i} \leqslant E_{j}$ means that $x \leqslant y$ for every x in E_{i} and every y in E_{j}.

Theorem D (Ferguson [2, p. 27].) Let $E_{1}<E_{2}<\cdots<E_{r}$, and assume that $E_{i} \cap E_{i+1}$ consists of at most one point, $i=1,2, \ldots, r-1$. Consider an n-incidence matrix $E=\left(e_{i j}\right)_{i=1,2 \ldots . . . i}^{)_{i=0}^{i n-1}, \ldots, w_{i j}}$, 1 implies that $x_{i} \in E_{j}$. Then, if E satisfies the Pólya conditions, E is poised.

Theorem 8. Let E_{1}, \ldots, E_{r} be as in the first sentence of Theorem D, and let $S=\otimes_{j=0}^{r} C\left(E_{j}\right)$. If p_{1} and p_{2} are in P_{n-1} and \tilde{p}_{1} and \tilde{p}_{2} are best approximations to f in S, then $p_{1}^{(r)}=p_{2}^{(r)}$.

Proof. From Theorem D and an argument analogous to that used in the proof of Theorem 5, it follows immediately that P_{n-1} satisfies the condition of Theorem 7 with $s=0$.

References

1. B. L. Chalmers and L. O. Ferguson, Sets of best approximation in certain classes of normed spaces, J. Approximation Theory 4 (1971), 194-203.
2. D. Ferguson, The question of uniqueness for G. D. Birkhoff interpolation problems, J. Approximation Theory 2 (1969), 1-28.
3. A. L. Garkavi, On dimensionality of polytopes of best approximation for differentiable functions, 23 (1959), 93-114.
4. L. Johnson, Unicity in approximation of a function and its derivatives, Math. Comp. 22 (1968), 873-875.
5. D. G. Moursund, Chebyshev approximation of a function and its derivatives, Math. Comp. 18 (1964), 382-389.
6. T. J. Riveln and H. S. Shapiro, Some uniqueness problems in approximation theory, Comm. Pure Appl. Math. 13 (1960), 35-47.
7. I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543.
8. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York, 1970.
