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1. INTRODUCTION

Let Cr/ denote the space of r-times continuously differentiable functions
on the interval I = [a, b] of the real line R. The question of uniqueness
of best approximation of functions in CrI by functions in a finite dimensional
subspace, with respect to various norms. has been investigated in several
papers. Garkavi [3] examined the problem using the ordinary supremum
norm

11/[100 = max I/(x)l.
XEI

In [1] we considered the norms

I1III = max[l/(e)l, Ipll(e)I,... , Ipr-l)(e)l, 111<r)llp], I ~ P < 00,

where II . lip denotes the LP norm and e is a fixed point in 1. Moursund [5]
and Johnson [4] studied the norm

11II1 = max[ll/lloo ,111(1) II", ,..., Ilpr> II",].

In this paper we shall further investigate this latter norm.
Moursund and Johnson show that if the (r + l)st derivative of I exists

everywhere on I and if PI and pz are best approximations to I in P" , the
space of polynomials of degree ~ n, then py> = p~r>, r = 0, 1,2,.... In the
case r = 0, Tchebycheff's classical result shows that the requirement of
existence of the (r + l)st derivative is unnecessary. In Section 2 we give
an example to show that this requirement cannot be dropped if r > 0.

Garkavi showed that in order for an n-dimensional subspace V to be
p-Tchebycheff (see Section 3 for definition) with respect to the usual
supremum norm in Cr, r ~ 1, it is necessary and sufficient that any k + p
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linearly independent elements of V have no more than n - k - p common
zeros which are also common double zeros or boundary zeros of p + 1
of these elements, k = 1,2,... , n - p. In Section 4 we shall extend the
sufficiency part of Garkavi's result to the norm

Ilfll = max[lIflloo , Ilfll) 1100 ,•.• , IlflT
) 1100]

on the space of functions having an (r + 1)st derivative everywhere on I
(Theorem 3). By use of the results of Ferguson [2] we shall see that the
polynomials satisfy the conditions of this extended sufficiency result, and,
thus, the result of Moursund and Johnson (Theorem 5) follows as a corollary
of Theorem 3.

The results mentioned above are special cases of the more general ones
discussed in Section 3 where we consider the simultaneous approximation of
r + 1 continuous functions fo ,it ,...,fT by a function p in V and by its
first r derivatives over r + 1 possibly different subsets of R. In the situation
where each of the r + 1 subsets of R is the same finite union of closed
intervals, we shall perform a certain imbedding and then employ the methods
of Rivlin and Shapiro [6] and Garkavi [3] to obtain an extension of Garkavi's
result (the condition on V will be necessary and sufficient). Finally, in
Section 5 we shall obtain uniqueness results for approximation by polynomials
with respect to another arrangement of the r + 1 subsets of R. Here we
shall use again the results of Ferguson to show how the space Pn fits into
the scheme.

2. EXAMPLE OF NONUNIQUENESS OF DERIVATIVE OF BEST ApPROXIMATION

DEFINITION. If V is a subspace of a normed linear space S with norm II . II,
we say that g E Vis a best approximation of an elementf of S if Ilf - gil =
infhEv Ilf - h II. It is clear that the set of such best approximations is convex.

In this section we shall demonstrate a function f E elf such that the best
approximations tofin P2 with respect to the norm Ilfll = max[llflloo , Ilfll) 1100]
do not have identical derivatives.

Let I = [-4.25, 4.25]. Let fll)(X) = I x I (0 ~ I x I ~ 1.5) and
f(l)(x) = 1.5 (1.5 ~ I x I ~ 4.5). Let f(O) = O. Then f(x) = (sgn x) x 2j2
for 0 ~ I x I ~ 1.5 andf(x) = (sgn x)[1.5 Ix I - 1.125] for 1.5 ~ I x I ~ 4.5;
see Figs. 1 and 2. Notice thatfll)(x) is even andf(x) is odd.

Now suppose that the derivative of a best approximation p in P2 to f is
unique. Then its graph must be horizontal. For, because of the symmetry
of f and fll), if p(l)(X) = ax + b, then p2)(x) = -ax + b is also the
derivative of a best approximation in P2 to f We claim that p(x) = x.
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Indeed, f(x) is an increasing function with values varying on I between
-5.25 and 5.25. If p(1l(X) = I, then p(x) = x + c is an increasing function
with values varying on I between c - 4.25 and c + 4.25. Thus,p(x) = x + c
has deviation of 1 + I c I from f(x) at one of the endpoints. Let c = O.
Then it is easy to check that the maximum deviation 1 ofp(x) = x fromf(x)
occurs only at the endpoints of 1. Note that the maximum deviation of
p(ll(X) = 1 from j<l)(X) is also 1 and occurs at x = O. Thus,

lif - p II = max[llf - p 11",,111(1) - p(l) II",] = 1.

Further, ifp(1I(X) = a > 1, then 111(1) - p(1l Ii", = a > 1. Ifp(l)(X) = a < 1,
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then p(x) has total variation 9.5a on I; hence, p(x) must deviate from I(x)
by more than I at at least one of the endpoints 4.25 or -4.25. We conclude
that if the derivative of a best approximation p in P2 to I is unique, then
p is unique and p(x) = x.

Now, however, considerpix) = (E/2) x2 + x, E ;? O. Thenp~l)(x) = €X + I
and it is easy to check that, for E sufficiently small, 111(1) - p?) 1100 = I
(f(1)(x) - p~l)(X) = I, iff x = 0), and [II - p.lloo = I (f(x) - P.(x) = I iff
x = ±4.25). Thus, p(x) = x is not a unique best approximation in P2 to f

Remark I. Note that the crux of the matter in the foregoing example
is that we can slightly rotate the graph of p(l)(x) about the point (0, I)
without increasing 111(1) - p(1) 1100' This is because the graph of 1(1) is
wedge-shaped at x = o.

Remark 2. If the length of the interval I is not greater than 2, then
the requirement of existence of the (r + I)st derivative in Moursund and
Johnson's result can be dropped (this follows from the mean value theorem).
In fact, plr) is then the best Tchebycheff approximation to I lr) of degree
;(; n - r, and III - p II = Ill lr) - plr) 1100 .

3. SIMULTANEOUS ApPROXIMATION

Let S be a subspace of 0 1=0 C(E1), where E1 (j = 0, I, ... , r) are compact
subsets of R, with norm 1II11 = 11(/0 ,h ,.. ·,fr)11 = max[ll/o 1100 , 11/1 1100 ,... , Il/r 1100]
where II/; 1100 = SUP"'EE I/;(x)l.

j

DEFINITION. By the dimension of a convex set P (dim P) in a finite
dimensional vector space we mean the largest integer k for which there
exist k + I elements gl , g2 ,... , gk+l in P such that

are linearly independent. (If P consists of a single point, we set dim(P) = 0;
if P is empty, we set dim(P) = - I.) If W is a subspace of S, then, for each
fixed q (0 ;(; q ;(; r), the maximum dimension of sets PW(f) of qth compo
nents of elements of best approximation in W of functions I in S is called
the q-rank of W in S. (In the case r = 0 we say (following [8]) that W is
s-semi-Tchebycheff or s-Tchebycheff if, for all I in S, -I ;(; dim P~)(f) ;(; s
or 0 ;(; P~)(f) ;(; s, respectively.)

Now suppose V is an n-dimensional space of functions g defined on
E = U;-o E1 which belong to n;=o C1E1 . Let V = {g = (g, g(1), ... , glr));
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g E V}. We wish to investigate the r-rank of V in S (provided, of course,
V is a subspace of 8). Note that Ilf - gil < E means Ijj(x) - g(jl(x)1 < E
for all x in Ej and all j = 0, 1,... , r simultaneously.

IffE S, then imbedfin C(X), where X = U;=o (Ej , j), by f*(x, j) = jj(x)
if x E Ej , j = 0, 1,... , r. We endow X with its natural topology. By the
Hahn-Banach theorem, there exists an element L in the dual of C(X),
[C(X)]O, such that Lev) = {O}, II L 11° = 1, and L(f) = p = infgEV Ilf - gil.
By the Riesz representation theorem, L(h) = Ix h dJL' where JL is a finite
Borel measure on X. Now proceeding as in the proof of Haar's theorem
(see [6]) we conclude that g is a best approximation in V to f if and only if
g* is a best approximation in V* to f*, and the latter implies that
f* - g* = pli*, where I h* I = 1 almost everywhere with respect to JL.

Note that JL I(Ei'j) = JLj is a finite Borel measure on (Ej , j), j = 0, 1,..., r.
Hence, we can write JL = JLo + JLI + ... + JLr' We refer to an element
of X as a generalized point. If g E V, we call any zero of g* in X a generalized
zero of g.

The proof of the following two theorems were obtained by combining
the methods of Garkavi [3] and Rivlin and Shapiro [6] after performing the
imbedding described previously.

Theorem 1 reduces to a slight generalization of Garkavi's theorem [3, p. 97],
if we set r = 0.

THEOREM 1. Let S = (8)1=0 {jj ; jj is differentiable on E} where E is a
finite union ofdisjoint closed intervals {I,,}::'=l . Thenfor V to have r-rank sin S,
it is necessary and sufficient that among the common generalized zeros of k
(k = s + 1, s + 2,... , n) linearly independent elements of V there are no more
than n - k generalized points which are generalized double or boundary
zeros ofs + 1 of these elements whose rth derivatives are linearly independent.
((x, j) is a generalized double zero of p if p<jl(X) = p<i+ll(X) = 0; (x, j) is a
generalized boundary zero of p if p(jl(X) = 0, where x is a boundary point
of some f".

Proof Sufficiency. Suppose g~~2 - gtl, g~~l - gtl,... , g~r) - gtl are
linearly independent where gl , g2 ,... , g8+2 are best approximations in V to f
Hence, among the common generalized zeros of the elements g8+2 - gl'
g8+1 - gl ,... , g2 - gl' there are at most n - s - 1 common generalized
double or boundary zeros in X. But each interior generalized zero of gi - gl
in the support of JL is a generalized double zero, i = 2, 3,... , s + 2. This
follows since, if (x, j) is interior to (E, j) and is in the support of JL, then

Ijj(x) - g~j)(x)1 = p = maEx Ijj(y) - g~j)(Y)I,
yE
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hence,

i = 1,2,3,... , s + 2;

i = 2, 3,... , s + 2.

Hence, 1-' has a support of n - k + I (k ~ s + 2) generalized points,
say (Xl' il), (X2 , i2),... , (Xn-k+l , in-HI)' Thus, L = 'L:;lk+l Cj.!l(xl.i;) , where

.!l(x;.i;)h = hi;(xl) . Now L(V) = {O} implies that L.:::lk+l Cje(xJ'i;) = °on V,
where e(X;.il)g = g(ij)(Xj) (l :s;; j :s;; n - k + 1), and, thus, {e(X;.i;)}~:rl

has rank :s;; n - k on V (i.e., {e(x;.i;)};:ik+l spans a space of dimension
at most n - kin vo.) Hence, there are, in V, k linearly independent elements
hI = gS+2 - gl' h2 = gS+l - gl ,... , hS+l = g2 - gl' hS+2 ,... , hk such that
h~;(xj) = ° (j = 1,2,... , n - k + I), t = 1,2,... , k. But each (Xj, ij),
j = 1,2, , n - k + 1, is a common generalized double or boundary zero
of hI' h2 , , hs+l • Hence, among the common generalized zeros of the k
(:s;; s + 2) linearly independent elements hI' h2 , ... , hk of V there are
n - k + 1 generalized double or boundary zeros of hI , h2 ,... , hS+l' and
hir), h~r>, ... , h~~l are linearly independent-a contradiction.

Necessity. Suppose there exist linearly independent elements gl , g2 ,... , gk
(k ~ s + 1) in V whose common generalized zeros include as a subset
T = {(Xl' il ), (X2 , i2), ... , (Xn-k+l ,in-HI)}' each element of which is a
generalized double or boundary zero of gl' g2 ,... , gS+l , and gt>, g~r), ... , g~~l
are linearly independent. Then {e(X;.ij)};==--rl is a linearly dependent system
in Vo, for its rank does not exceed n - k, since e(X ..i.)(gt) = °for t = 1,2,... , k,, ,
j = 1,2,... , n - k + 1. Hence, there exist scalars Cj (1 :s;; j :s;; n - k + 1)

-~ ~ .not all zero, such that L = Li=l Cj.!l(x .i) = °on v. Assume, wIthoutn-k+l ; ;
loss of generality, that L.i~l I Cj I = 1. Clearly II L 11° :s;; 1. Now choose hs

in C2(E) such that II hs 1100 = 1, hs(Xi) = sgn Ci for all (Xi' s) E T, and
I h.(x) I < 1 if (x, s) if: T, s = 0, 1,... , r. Let h = (ho , hI'"'' hs) E S. Then

n-k+l .
clearly ILh I = L.i=l I Cj I = 1, whIle II h II = 1. Hence, IlL 11° = 1.
We may assume that II gm II < 11k, m = 1,2,... , k. For s = 0, 1,... , r, form
fs(x) = hs(x)[l - L.~-l I g,<,:>(x)ll on F = U:::lk+l ([aj, ,Bjl, ij), where
([aj , ,Bjl, ij) is a neighborhood of (Xj, ij) containing no simple zeros of
gii;), g~i;), ... , g~ij> except, possibly, boundary zeros. This is possible since
either all g::';> (l :s;; m :s;; k) have a double zero at Xj , or Xj is a boundary
point of E. Since g::') has, in F, only zeros of order greater than one, except
possibly at the boundary ofF, I g::'> I is also differentiable in F (1 :s;; m :s;; k).
Hence, fs is differentiable in F. Further If.(x) I < 1 if (x, s) is an (aj, ij)
or (,Bi , i j ) in the interior of (E, s). Thus, we can extend fix) to a function
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having a derivative in all of E and of absolute value < 1 - i) in E ,...., F,
i) > 0 (s = 0, 1, ... , r). Letf = (fO,f1 ,... ,fr) ES. Then for all Ii in P, ""'"

n-k+l

Ilf - Ii II ~ I L(f - Ii)I = I Lfl = L Cj/;JXj)
i~l

n-k+l k n-k+l

= L cjhij(xj) [1 - L I g~;)(xj)l] = L cjhi;(xj)
j=l m-l j~l

n-k+l

L Cj sgn Cj = 1.
j=l

On the other hand,

jJix) - f Emg~)(X)1 ~ Ifs(x) I + f Em Ig~)(x)1
m~l m~l

k k

~ I h.(x)I [1 - L Ig~)(x)l] + L Em Ig~)(x)1
m~l m~l

~ 1 if 0 ~ Em ~ 1 (1 ~ m ~ k).

Thus,

If Emgm ; 0 ~ Em ~ 1 (1 ~ m ~ k)l
m=l

is a set of best approximations tof But since {g::l}:,i":l is linearly independent
we see that V has r-rank ~ s + 1 in S.

THEOREM 2. Theorem 1 remains true if

r

where q ~ 1.

Proof The condition on V is, of course, still sufficient. For the necessity,
observe, first, that in the case q = 1, the functions f.(x) in Theorem 1 are
in CIF and can, thus, be extended to be in ClEo If q ~ 2, however, Ig:':l(X)I is
no longer necessarily in CqE, m = 1,2,... , k. Thus, following Garkavi,
we construct functions f. (0 ~ s ~ r) as follows. If T is as in Theorem 1,
let T1 = {(x, s) E T; x E boundary of E} and T2 = {(x, s) E T; x E interior
of E}. For each s (0 ~ s ~ r) choose anf.(x) in CqE such that
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(i) f.(xj) = sgn Cj if (Xj , s) E T;

(ii) If.(x) I < 1 if(x,sHT;

(iii) f~l)(Xj) =F 0 if (Xj , s) E T1 ;

(iv) f~2)(Xj) =F 0 if (Xj , s) E T2.

As before, Ilf - gil;? 1 for all g in V. For each (Xj, s) in T, let
Wj = ([aj , f3j], s) be a neighborhood of (Xj , s) such that

(i) f~l)(X) =F 0 if (x, s) E Wj and (Xj , s) E T1 ;

(ii) f~2)(X) =F 0 if (x, s) E Wj and (Xj ,s) E T2 .

Let

E1S = U Wj
(rei.sleTi

and E2s = U Wj.
(rei·sleT.

Assume, without loss of generality, that

and that

m = 1,2,... , k.

By Taylor's formula we have, if 0 ~ I Em I ~ 1,

k k

f.(x) - L Emg~l(x) = f.(xj) + [f~ll(x) - L Emg~+ll(x)] (x - Xj),
m~l m=l

where (x, s) and (x, s) belong to Wj, if (Xj , s) E T1 , and

where (x, s) and (x, s) belong to Wj, if (Xj, s) E T2 . Since IfS(Xj) I = 1,
we have that f~l)(Xj) f.(xj)(x - Xj) < 0 if (Xj , s) E T1 and f~2)(xj)fs(xj) < 0
if (Xj, s) E T2 • Combining these facts with Taylor's formula and the fact
that the first and second derivatives of fs strongly dominate the first and
second derivatives ofL~=l Emg~) in E1s V E2s, we obtain that

If.(x) - f Emg~l(X)1 ~ 1
m=l
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Further, in X,....., [E18U E28], IfsCx) I ~ e < 1. Hence, if II g~) II", < (1 - e)/k,
1 ~ m ~ k, we have

Hence

IIf8 - t Emg~) II ~ 1,
m=l 00

m = 1,2,... ,k.

klit - L Emim II ~ 1,
m~l

and the conclusion follows as in Theorem 1.

4. ApPROXIMATION IN crE

If r > 0, the subspace V = Pn-1 does not satisfy the condition in
Theorem 1. In this section we examine the situation in whichf= (10 ,II ,... ,fr),
Ii = f~i), 0 ~ i ~ r. In this case the sufficient condition of Theorem 1
can be strengthened to include Pn-1 .

DEFINITION. If g E crE and 0 ~ i ~ r, we call a generalized point (x, i),
such that gCi)(X) = 0, an r-generalized zero of g. Let g(-l) == 1. If gCi)(X) =
g(i+1)(X) = 0, we may call (x, i) an r-generalized new double zero provided
we agree that neither (x, i-I) nor (x, i + 1) may be so labeled. Ifg(i)(x) = 0
and x is a boundary point of E, then (x, i) is called an r-generalized boundary
zero of g.

THEOREM 3. Let Cr +1E denote the space offunctions having an (r + 1)st
derivative everywhere on E, a finite union of disjoint closed intervals. Suppose
that the n-dimensional subspace V satisfies the condition that among the
common r-generalized zeros ofk (k = s + 1, s + 2,... , n) linearly independent
elements of V, there are no more that n - k generalized points which are
r-generalized new double or boundary zeros of s + 1 of these elements whose
rth derivatives are linearly independent. Then, with respect to the norm
Ilfll = max[llfll", , Ilf (1

) II", ,... , Ilpr) II",], the dimension of the set of rth
derivatives of the best approximations in fAtro any fin Cr+1E does not exceed s.

Proof We identify Cr+1E with a subspace S* of S of Theorem 2 by
1ettingf* = (f,P1), ... ,j(r»). We follow a reasoning analogous to that in the
sufficiency proof of Theorem 1 after we observe that if If(j)(x) - gl j)(x)1 = P
for x interior to E, then pH1)(x) - g~H1)(X) = 0 =I=- p, i = 1,2,... , s + 2.
(In the proof of Theorem 1 it is possible that Ijj(x) - gl j )(x)1 = p and
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Ifi+1(x) - gli+l)(x)! = p.) Thus, each interior r-generalized zero of gi - gl
in the support of fL is an r-generalized new double zero, i = 2, 3,... , s + 2,
according to the foregoing definition of an r-generalized new double zero.
Hence, fL has a support ofn - k + I (k ;;? s + 2) generalized points, etc. D

Let Pn-l[ be the space of real polynomials of degree less than or equal
to n - 1 on the interval [ = [a, b] and let {Xl, X2 , ... , Xk} C I. Let ~i denote
the linear functional on Pn- l [ defined by ~i(p) = P(i)(Xi)' Following
Schoenberg [7], let E = (eii)t::tL::~-l be an n-incidence matrix, i.e., each
eij is °or 1 and

L eii = n.
i.i

We say that E is poised if the set of n linear functionals {~i; eij = I} is
linearly independent on Pn-lI. If E is an n-incidence matrix, let

and

k

mi = L eii'
i=l

j = 0, 1,... , n - I,

j = 0, I, ... , n - 1.

Then E is said to satisfy the P61ya conditions if

M i ;;? j + 1 for j = 0, I, ... , n - 1.

In the following four theorems we assume that the n-incidence matrix E
satisfies the P61ya conditions.

THEOREM A. (P6lya and Whittaker, see [2].) If k = 2, then E is poised.

THEOREM B. (Ferguson [2, p. 24].) If k > 2, and if ei,i-l = ei,iH> = 0,
eii = ... = ei.i+p-l = 1 implies p is even, then E is poised.

THEOREM C. (Schoenberg, see fI' p. 25].) If Xl = a and Xk = b, and if
2 <; i <; k - 1 and eii = 1 imply eii' = I for each j' <; j, then E is poised.

By combining Ferguson's proofs of Theorems Band C we can get the
following result.

THEOREM 4. If Xl = a and Xk = b, and if 2 <; i <; k - 1 and ei,i-l =
ei,i+p = 0, eii = ... = ei,i+p-l = I imply p is even, then E is poised.
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THEOREM 5 (Moursund [5] and Johnson [4].) Consider Cm [ with the
norm 1II11 = max[ll/lloo, 11/(1) 1100,11/(2) 1100 ,..., Ilpr) 1100], where [= [a, b]. If
PI and P2 are best approximations in Pn-l[ to I belonging to Cr+1[, then
pt) = p~r).

Proof We show that Pn-l[ satisfies the condition of Theorem 3, where
E = [ and s = 0. The condition in this case can be reworded as follows.
If

Q .L _ {roil roi. rOin-k+l}.LPI' P2,... , Pk E 1 - "z, ,,,z, , ... , "z"h 32 n-k+l

and

where Ql ('\ Q2 is empty and all im ~ r (here I indicates that ~",+1 is omitted
if Xi = a or Xi = b, and P E Q.L means P is in the nullspace ;f each of the
ele~ents of Q),"'then either PI ,P2 ,... , Pk are linearly dependent or pi") = 0,
k = 1, 2,... , n. Let v be the number of elements in Q2 .

Now fix k. For °~ q ~ n - I, let Eq = (eij)t:t:~~::;.::~:;:~, where eii = 1
if !lji E Sq C Ql ('\ Q2 , and eo = °if !lji ¢: Sq , where Sq will be determined.
(Note: eo = °if j > r.) Let

and

n-k+l
mj = L eij,

i=1

j = 0, 1,... , n - 1,

P = 0, 1, 2,... , r.

Now, iffor some UE{O, 1, 2,... ,r}, N r - t < n - (r - t)forall t = 0, I,... , U - 1,
and Nr- u ~ n - (r - u), then clearly Ql u Q2 includes a subset Sr-u
containing n - (r - u) linear functionals such that p-u satisfies the P61ya
conditions on Pn-(r-u)-I' and, hence, PI E [Ql U Q2].L implies Pi"-U) = 0,
by Theorem 4.

On the other hand, if N r - t < n - (r - t) for all t = 0, 1,..., r, then we
can augment the set Ql U Q2 by adding in k - v-I linear functionals,
for example,.fEJ , .fEJ ,..., .fE~ , so that the corresponding

"-1:+2 "-k+3 ft-1,)

n-incidence matrix satisfies the P61ya conditions and the conditions of
Theorem 4. Thus, Ql is linearly independent, and, hence, PI , P2 ,... , Pk are
linearly dependent since k + (n - k + 1) = n + 1 > n. D
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5. OTHER RESULTS

We return now to the general situation of Section 3 described prior to
Theorem 1.

The following two theorems reduce to Rubenstein's generalization of
Haar's theorem on R in case r = °[3, p. 94].

THEOREM 6. Let S = (8)~=0 C(E;). Then for V to be s-Tchebycheff in S
it is necessary and sufjicient that each s + 1 linearly independent elements
of V have fewer than n - s generalized zeros in common.

Proof This follows by applying Rubenstein's generalization of Haar's
theorem [3, p. 94] to the space CX of the previous discussion. 0

THEOREM 7. Let S = (8)1=0 C(E;). Then for V to have r-rank s in S,
it is necessary and sufjicient that each s + 1 elements of V whose rth derivatives
are linearly independent have fewer than n - s generalized zeros in common.

Proof Sufjiciency(Sketch). Supposeg~~2 - gtl,g~~1 - gt), ... ,g~r) - girl
are linearly independent, where gl' g2 ,... , gS+2 are best approximations
in V to f Hence, there are at most n - s - I common generalized zeros of
gs+2 - gl ,... , g2 - gl' and the proof proceeds analogously to that of
Rubenstein's generalization of Haar's theorem on R.

Necessity (Sketch). Suppose there exist elements gl' g2 ,... , gS+1 in V
whose rth derivatives are linearly independent and which have n - s common
generalized zeros forming a set T = {(Xl' i1), (x2 , i2), .. ·, (Xn- s , in_s)}' Then
{ecrri;l}j,:; is a linearly dependent system in vo, and there exist scalars Cj

(1 ~ j ~ n - s) not all zero, such that

n-s

L = L: c;2(x;.i;l = 0,
;=1

on V. Assuming

n-,<;

L: I c; I = 1,
;=1

we see that II L 11° = 1 by choosing hE (8)j'=0 C(E;) such that II h II = 1 and
h.(x;) = sgn c; for all (x;, s) E T, s = 0, 1, ... , r. The proof proceeds
analogously to that of Rubenstein's theorem. 0

DEFINITION. Ei ~ E; means that X ~ Y for every X in E; and every y
in E;.
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THEOREM D (Ferguson [2, p. 27].) Let E1 < E2 < ... < Er , and
assume that Ei n EiH consists of at most one point, i = 1,2,... , r - 1.
Consider an n-incidence matrix E = (eij){:tL:::~-l, where eii = 1 implies
that Xi E Ei . Then, if E satisfies the P6lya conditions, E is poised.

THEOREM 8. Let E1 , ... , E r be as in the first sentence of Theorem D,
and let S = @J~O C{Ej ). If PI and P2 are in Pn-I and PI and P2 are best
approximations to fin S, then pir) = p~r).

Proof From Theorem D and an argument analogous to that used
in the proof of Theorem 5, it follows immediately that Pn-l satisfies the
condition of Theorem 7 with s = o.
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